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Abstract 

A global vector field reconstruction method including a control parameter dependence is derived and tested with the 
Riissler model. The reconstructed model is checked by comparing its bifurcation diagram with the one of the original 
system. 

1. Introduction 

Following pioneering papers by Packard et al. r11, 
Crutchfield and McNamara [2], and Farmer and 
Sidorowitch [ 31, global vector field reconstruction 
from numerical scalar time series has become a topic 
of growing interest in nonlinear dynamics (see Refs. 
[ 4- 131) . In particular, the extraction of a set of equa- 
tions which models experimental data is now a very 
important goal in the study of nonlinear systems (see 
Refs. [ 14-161). 

A global vector field reconstruction has already 
been applied to experimental systems by Brown et al. 
[ 161 with the times series provided by the Belousov- 
Zhabotinski reaction or by our group [ 14,151 with the 
experimental data coming from a copper electrodisso- 
lution (experimental setup by Hudson et al. [ 171). A 
next step in data modelling is then to obtain a model 
which involves a control parameter dependence. Such 
a model has been obtained actually by using neural 
networks [ 18,191. Nevertheless, a model involving a 
control parameter dependence was not yet given with 
a global vector field reconstruction method using a 

L2-approximation. The aim of this paper is therefore 
to present a global vector field reconstruction tech- 
nique allowing one to model the underlying physical 
system and its evolution under a control parameter 
modification from scalar time series recorded for dif- 
ferent parameter values. The present work is a proof 
of principle. Extensions of the present work to ex- 
perimental data and stability to noise are important 
issues that are postponed to future studies. 

The paper is organized as follows. Section 2 de- 
scribes the reconstruction method. Section 3 presents 
the reconstructed model with an explicit control pa- 
rameter, starting from the variable y of the Riissler 
system. The model is checked by comparing the bifur- 
cation diagram generated by the model with the one 
given by the Riissler system. Section 4 gives a con- 
clusion. 

2. Reconstruction method 

Let us consider a nonlinear dynamical system de- 
fined by a set of autonomous ordinary differential 
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equations, 

*=f(x;CC), (1) 

where x(t) E R” is a vector valued function depend- 
ing on a parameter t called the time and f, the so- 
called vector field, is a n-component smooth function 

generating a flow 4,. JJ E Iwp is the parameter vector 
with p components. 

System (1) is called the original system and is un- 
known in the experimental cases. Without any loss of 
generality we present the method with n = 3. From 
an experimental point of view, only one variable is 
assumed to be known. Let this observable be called 
x. Let us also assume that we can record time series 
for different values of a recorded control parameter (Y. 
The original system may therefore be written as 

i = f3(x,y,z,cu). (2) 

The aim now is to reconstruct a vector field equivalent 
to the original system in the form of a so-called stan- 
dard system built on the observable and on its deriva- 
tives according to 

X=a=I: P=Z, i=l$(X,I:Z,a), (3) 

where the reconstructed state space related to the 
standard system is spanned by derivative coordinates 
(X,YZ) = (x,&i) 

A global vector field reconstruction may then be 
achieved if a sufficiently good approximation 1”, of 
the so-called standard function Fs is designed. The 
approximation FS is obtained by using a Fourier 
expansion on a basis of orthonormal multivariate 
polynomials generated on the data set [ 7,131. These 
polynomials depend on the derivative coordinates 
(X, Y Z) and on the control parameter cr, involving 
terms ( XiY.iZk&), generalizing our previous studies 
without any control parameter in which monomials 
were more simply ( X’YjZk) . Therefore, we introduce 
monomials Pn’, 

p” = Xiyizkal (4) 

The one to one relationship used between quadruplets 
(i, j, k, Z) and natural numbers m is an extension in 
four dimensions of the one defined in Ref. [ 131. This 
relationship is clearly illustrated in Table 1. 

Table 1 
Relationship between quadruplets (i, j, k, I) and natural number wz 

Ill (Lj, k, 1) 

2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
15 
. . . 

(0, 0, 0, 0) 
(1, 0, 0, 0) 
(0, 1, 0, 0) 
(0, 03 1, 0) 
(0, 0, 0, 1) 
(2, 0, 0, 0) 
(1, 1, 4 0) 
(1, 0, 1. 0) 
(I. 0, 0, 1) 
(0, 2, 0, 0) 
(0, 1, 1, 0) 
(0, 1, 0, 1) 
(0, 0, 2, 0) 
(0, 0, 1, 1) 
(0, 0, a 2) 
. . . 

The approximation of the function may then be writ- 
ten as follows, 

(5) 

where Nnz is the dimension of the basis {P”‘}. For a 
complete description of the approximation technique 
and for a better understanding of the present work, the 
reader may consult Ref. [ 131. 

In this work, we arbitrarily choose to record the 
same number NC of points Xi for each recorded value 

of the control parameter. It is then found that the 
reconstruction depends on (i) N4, the number of 
vectors (Xi,x,Zi,Zi,Lyi) (i E [l,N,]) on the net, 
(ii) h, the time step between each of them, (iii) N,, 
the number of quadruplets (Xi, x, Zi, Zi) sampled 
per pseudo-period for each recorded value of the 
control parameter, (iv) NP, the number of retained 
multivariate polynomials and (v) p, the window size 
on which the derivatives are estimated. The vector 
(NC, Nq, h, N,, Np, p) is called the driving vector and 
defines all the reconstruction parameters. In practice, 
the choice of these parameters may have a signifi- 
cant effect on the quality of the results (see Refs. 
[ 13-151). 

A guideline for choosing a good driving vector is 
based on the use of an error function E, which is 
defined as 



L. Le Sceller et d/Physics Letters A 211 (1996) 211-216 213 

E, 

This error function is calculated by using absolute val- 
ues for computational efficiency. 
E, may be understood as a relative error between 

the value of the standard function directly evaluated 
by calculating the fourth order derivative from the data 
series and the one obtained from its approximation. 
Let N, and h be fixed from the available time series. 
For a given value of N4, optimal values for. N, and 
the number of polynomials, Nr,, are obtained by mini- 
mizing the error function. Therefore, the optimization 
problem reduces to finding a proper value of N4. How- 
ever, for a given Nq, the corresponding approximated 
system is not necessarily numerically integrable, even 
if the minimized error function passes through a mini- 
mum or a local minimum. Consequently, the search for 
a successful global vector field reconstruction needs 
systematical trials which can be automatically done 
with computational help. 

For the global vector field reconstruction method 
developed here, the use of such an error function 
is very convenient. Nevertheless, finding an optimal 
modeling of nonlinear data series remains a tricky 
problem for which other research groups like Brown 
et al. [ 161 proposed more elaborate error functions. 
The use of such an error function is similar to the 
one of the least squares minimization term proposed 
by Brown et al. [ 161, and is very convenient for the 
global vector field reconstruction method developed 
here. 

3. Application to the RSssler system 

The Riissler system is a well known prototype of a 
continuous dynamical system defined by a nonlinear 
set of three ordinary derivative equations, 

k=-y-z, jJ=x+ay, 

i =b+z(x-c). (7) 

This system was extensively studied by our group 
along the following line in the control parameter space: 
a E [0.33,0.557],b = 2.,c = 4. [20,21]. Moreover, 
we have shown that there exists a diffeomorphism be- 
tween the y-induced attractor and the original attrac- 

tor [ 221. Consequently, y provides a good checkpoint 
for our method. We choose y as the observable and a 
as the variable control parameter, (b, c) being fixed to 
(2., 4.). For this observable, the exact standard func- 
tion possesses a polynomial form and the standard 
system is 

51 

A=j=x P=Z, _bcK,P"', 
m=l 

(8) 

where the Km-coefficients are reported in Table 2. 
This system is analytically derived since the original 

system is known. The model reconstructed by using 
the reconstruction method can be validated by com- 
parison with this exact standard system. The learning 
set of data is composed of four time series {yi, i E 

[l,N, = lOOO] }, generated for four different values 
of the control parameter a taken to be equal to 0.2, 
0.2625, 0.325 and 0.3875, respectively. One may re- 
mark that these u-values correspond to three different 
limit cycles of the period-doubling cascade and to a 
chaotic behaviour just beyond the accumulation point 
at uoo = 0.386. The sampling rate of the time series 
is taken according to the time step h = 10w2. Suc- 
cessive derivatives up to the third order are estimated 
from the data. To this purpose, a sixth degree interpo- 
lating polynomial is built, centered at each point, by 
using the six nearest neighbours. Derivatives are then 
obtained by deriving these polynomials. The window 
size p is taken to be equal to 7 in terms of h. 

A good approximation of the standard function is 
easily found with the driving vector ( 1000,100, 10m2, 
20,5 1,7) for which E,. = 3.8 x 10e7. With this driving 
vector, the estimated coefficients Kz of the standard 
function are reported in Table 2. The relative error E 
between the exact coefficients K,,, and the estimated 
coefficients Kz (for nonzero coefficients) is defined 
as 

(9) 

and is found to be less than 2.8%. 
Integration of the reconstructed model gives attrac- 

tors which may be shown to be topologically equiv- 
alent to the original RGssler attractors. For instance, 
the attractor obtained by integrating the reconstructed 
model for a = 0.492 is displayed in Fig 1. In order to 
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Coefficients of the standard function: K,,, are the values of the 

coefficients of the exact standard function Fs, Ki are the estimated 

values of Ga 

I -2. -2.00097282 
2 -4. -3.99933339 
3 -1. - 1.000037 11 
4 -4. -3.999426 
5 0. 0.00841346539 
6 0. -8.8697255 x lo--’ 

7 1. 0.999894278 
8 0. -0.0002 14664992 

9 0. -0.00213157114 
10 0. 7.51213253x10-5 

11 1. 0.999900554 
12 4. 3.99972943 

13 0. -4.81485058x10-’ 
14 I. 0.998381941 

15 0. -0.022 1199429 
16 0. 4.94222919x 1O-6 

17 0. -7.78785747x 1O-6 
I8 0. 1.19374657x10-5 

19 -1. -0.999909364 
20 0. -7.O4671O11x1O-6 

21 0. -1.14912515x10-’ 
22 0. 0.000396908727 

23 0. 2.79227097 x IO-’ 
24 -1. -0.999482388 

25 0. 0.00141280916 
26 0. 3.OOl59O42x1O-6 
27 0. -5.20397732x lo@ 
28 -1. -1.00019077 

29 0. 8.66979364x lo--’ 

30 0. 0.00028 1140302 

31 0. 0.000878615654 

32 0. -2.68477015x lo@ 

33 0. 9.83049711 x 1O-5 

34 0. 0.000670043193 

3.5 0. 0.0180776258 
36 0. - 1.30026484x lO+j 

37 0. -2.04684881 x 1O-6 

38 0. -2.72414197x10-6 

39 0. 3.08647232x lO-7 

40 0. 2.Ol83O313x1O-6 

41 0. -4.48262499x 1O-6 

42 0. -I .62630908 x 1O-5 

43 0. -1.5198787x10-6 

44 0. -3.12132332x10-6 
45 0. 0.000339325441 

46 0. -3.23923565 x 1O-7 

47 0. 2.1 I870483 x lo@ 

48 0. 1.5706643 x lo--’ 
49 0. -2.45328909x 1O-6 

50 0. - 1.02050039x lo-’ 

51 1. 0.999712123 

F 
-2.5 

Fig. 1. Reconstructed attractor for a = 0.492. 

Fig. 2. Bifurcation diagram of the model reconstructed from the 

y-coordinate of the Rijssler system. 

check our model with respect to the control parameter 
dependence, let us now compare the bifurcation dia- 
grams of the reconstructed system and of the standard 
exact system along the line a E [0.33,0.557] (see 
Figs. 2 and 3). These diagrams are computed with 
the Y-coordinate of the trajectories crossing a Poincare 
section P versus the values of the control parameter a, 
in which the Poincare section P is defined as follows, 

P={(XZ) ER*1X=X_,ri>o}, 
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F 
-2.5 

z * 

0.0 -1.0 -2.0 -3.0 -5.0 

Fig. 3. Bifurcation diagram of the standard system derived from 

the Rtjssler system starting from the p-coordinate. 
Fig. 4. First-return map in the Poincak section P of the recon- 
structed model for a = 0.5566334488. 

where X- = -[c - (c2 - 4~b)‘/~]/2a. is [21] 

These two diagrams compare very favourably. The 

reconstructed model as well as the original system ex- 
hibit a period doubling scenario up to the accumulation 
point for am = 0.386. A chaotic behaviour is there- 
after observed. The skeleton of periodic orbits which 
constitutes its spectrum evolves according to complex 

rules of growing and pruning providing a progressive 
enrichment of the phase portrait up to the death of the 
attractor for ao = 0.5566334488. 

8, = lim ai - 4-l 
= 1.70 f 0.08. 

i--+00 Ui+l - Ui 
(12) 

The parameter values ui extracted from the standard 
system are reported in Table 3. Our reconstructed 
model is validated if it is found to be in agreement 
with these two scaling laws. 

The evolutions along the considered parameter 
space line a E [0.33,0.557] of the two systems are 
now to be compared. This is achieved by computing 
first-return maps in the Poincark section P giving a 
precise characterization of the dynamical behaviour 
of the Rijssler system [ 2 I 1. Between uoo and ao, the 
first-return map of the standard system evolves from 
a two-branched map to a multi-branched map just 
before the boundary crisis that occurs at ao [ 201. For 
this u-value, the critical points are located according 
to a scaling law given by 

Indeed, the values of UT found for the model are 
reported in Table 3 and are found to be very close to 
those observed on the standard system. As a result, 
the scaling factor 8: is found to be 

so = ~irn u’ - ‘~-1 

1’00 ai;, - ai* 
= 1.70 f 0.08, 

in agreement with 8,. Also, we find 

8: = lim 
y-y_, 

i-m Y.* 
= 1.72f 0.1, 

I+1 --q 

SC = lim 
l$-x_1 
- = 1.68 f 0.04, 

i-+00 K,l - & 
(11) 

where the q? are the Y-coordinates of the critical points 
cr on the first-return map in the Poincark section P of 
the reconstructed system for a = 0.5566334488 (see 
Fig. 4), agreeing with 6,. The reconstructed model is 
therefore checked. 

where the l$ are the abscissae of the critical points ci 
in the Poincare section P of the exact standard system. 
This scaling property is identical to the one observed 
in the original system [ 201. As shown in Ref. [ 201, a 

second scaling law is defined on the parameter values 
ai for which new critical points ci appear on the first- 
return map of the standard system. This scaling rule 

4. Conclusion 

We presented a global vector field reconstruction 
method allowing one to model the behaviour of phys- 
ical systems under a control parameter evolution. This 

Yi 

(13) 
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Table 3 

Successive cr-values for which a new critical point ci appears on 

the first-return map of the Poincare section of the standard system. 
The values n; observed for the reconstructed model, also reported, 

are found to be in very good agreement with the exact values 

Ci ni a; 

CO 0.432 909 I 0.432909 
cs 0.49122 0.4913 
c4 0.523 85 0.523 85 
c5 0.537525 0.537525 
cs 0.54622077 0.546 22077 

c7 0.55038486 0.55038486 
cx 0.553 089 SO 0.553 089 50 

cs 0.55448601 0.55448601 
cn 0.55539091 0.55539091 
Cb 0.555 878 95 0.555 87890 
cc 0.556 192 09 0.556 192 09 
cd 0.556365 68 0.55636568 
cc 0.556475 85 0.556475 85 
C.f 0.556537984 0.5565379 
6 0.556 577 029 0.556 577 029 
ch 0.556599 350 0.556 599 320 
c; 0.556613243 0.556613 

Cj 0.556 62 1282 0.5566212 
coo 0.556633 448 8 0.556 633 448 8 

method has been successfully applied for the RGssler 
system starting from y-time series. This technique per- 
mits one to predict behaviour and bifurcations of the 
original system for control parameter values for which 
the system has not been observed. We now have to test 
this method on experimental data series and, partic- 
ularly, to check if its prediction capacities are robust 
against noise perturbations. 
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