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Constraining the topology of neural networks to ensure dynamics with symmetry properties
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This paper addresses the training of network models from data produced by systems with symmetry prop-
erties. It is argued that although general networks are global approximators, in practice some properties such as
symmetry are very hard to learn from data. In order to guarantee that the final network will be symmetrical,
constraints are developed for two types of models, namely, the multilayer perceptron~MLP! network and the
radial basis function~RBF! network. In global modeling problems it becomes crucial to impose conditions for
symmetry in order to stand a chance of reproducing symmetry-related phenomena. Sufficient conditions are
given for MLP and RBF networks to have a set of fixed points that are symmetrical with respect to the origin
of the phase space. In the case of MLP networks such conditions reduce to the absence of bias parameters and
the requirement of odd activation functions. This turns out to be important from a dynamical point of view
since some phenomena are only observed in the context of symmetry, which is not a structurally stable
property. The results are illustrated using bench systems that display symmetry, such as the Duffing-Ueda
oscillator and the Lorenz system.
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I. INTRODUCTION

An open question in model building is how to choose t
model type. Some examples in nonlinear dynamics incl
radial basis functions~RBF! @1#, nonlinear ordinary differen-
tial equations@2–5#, nonlinear difference equations@6–9#,
wave nets, that is, neural networks with wavelet activat
functions, @10# and multilayer perceptron~MLP! networks
@11,12#. Few papers up to date seem to have compared
performance of different model types, a few exceptions
clude Refs.@13,14,9# and the last two references consid
MLP networks.

The use of MLP networks in global modeling problem
applied to nonlinear dynamical systems is not as intens
other representations. One practical difficulty related to M
networks is that in some cases~systems with symmetry! such
models will hardly learn the system symmetryexactly. As a
consequence, specific features that are not structurally st
as pitchfork bifurcations, may not be present in the fin
model. This comes as a consequence of the great flexib
of the network structure and, in a sense, the blessing
become a curse. In particular, it is shown that symmetry
be easily imposed on a MLP network structure. Such c
straints will result in a network that isexactlysymmetrical
~in a dynamical sense! and that will be able, in principle, to
display pitchfork bifurcations and other symmetry-relat
phenomena@15#. In addition, networks obtained with suc
constraints are in general more robust to noise and to o
fitting. It is believed that the use of restrictions during n
work training ~one type of which is proposed in this pape!
may open a wide range of applications of MLP networks
global modeling of nonlinear dynamics.

This paper is organized as follows: Secs. II and III pr
vide a very brief description of the type of networks bei
considered, the used nomenclature, and the relation betw
network topology and fixed points. The main results of t
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paper are stated in Sec. II C for MLP networks and in S
III B for RBF models. Section IV presents some numeric
evidences of the results introduced in Secs. II C and III
Finally, Sec. V discusses the main points of the paper.

II. MULTILAYER PERCEPTRON NETWORKS

A. Preliminaries

The equation of a MLP network can be written as

y~k!5 f oXbo1(
j 51

Nj

wj
of j S bj1(

i 51

Ni

wji
h ui~k!D C, ~1!

wherey(k) is the network output at timek, ui(k) is the i th
input,wji

h indicates a weight of the hidden layer that conne
the i th input ~which is thei th output of the previous layer! to
the j th neuron of the hidden layer.b is a constant, called
bias, and the neuronactivation functionis f. The variables
indicated by an ‘‘o’’ are related to the output neuron. Final
Ni is the number of input signals andNj is the number of
neurons in the hidden layer. The function shown on the rig
hand side of Eq.~1! is often calledfeed forwardbecause
there are no feedback loopsinternal to the network. Com-
mon choices for nonlinear activation functions are Gauss
sigmoidal, and the hyperbolic tangent tanh(x). The weights
and bias terms, on the other hand, are determined by opt
zation algorithms that search to minimize a cost funct
which usually depends on the difference between the gi
data and the network output. Much care should be ta
in this minimization task to avoid overparametrization pro
lems @16,17#.

B. Fixed points

A network in the form of Eq.~1! can be easily written in
autoregressive form withnu lags of exogenous inputs b
©2004 The American Physical Society01-1
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taking ui5u(k2 i ), i 51,2, . . . ,nu , andny lags of the out-
put, that is,unu1,5y(k2,), ,51,2, . . . ,ny . In this case
the network output will become inputs to the network
future iterations and this recursion enables the network
become a discrete dynamical function of orderny . In steady
state, with a constant input, ū5ui5u(k2 i ), i
51,2, . . . ,nu , the network will converge to constant value
if it is asymptotically stable. Such values are the steady-s
values of the output and are denoted byȳ5unu1,5y(k

2,), ,51,2, . . . ,ny . Therefore, in steady state the netwo
can be written as

ȳ5 f oXbo1(
j 51

Nj

wj
of j S bj1ū(

i 51

nu

wji
h 1 ȳ (

i 5nu11

Ni

wji
h D C. ~2!

The solutions of Eq.~2! for ū50 are called the fixed point
of the network. Note that in this case the input is null.

C. Conditions for symmetry

In order to have fixed points at the origin, an autonomo
MLP network, as shown in Eq.~1!, should satisfy

05 f oS bo1(
j 51

Nj

wj
of j~bj !D 5 f o~bo1wTf!, ~3!

where vector notation was used. Because the weights an
bias parameters are estimated in such a way as to minim
cost function that will require a good fit of the netwo
model to the~dynamical! data, it is in general very difficult
to choose the activation functions in order to satisfy Eq.~3!.
Moreover, such functions should be differentiable in order
use general purpose training algorithms.

On the other hand, if the MLP network~1! does not have
any of the bias terms Eq.~3! reduces to

05 f oS (
j 51

Nj

wj
of j~0!D 5 f o~wTf0! ~4!

and this condition is easily satisfied iff050, that is, f j (0)
50, j 51, . . . ,Nj , and f o(0)50.

Let us denote the static function of an autonomous n
work without bias terms byF(•). It is desired to derive the
conditions for this network to have fixed points that are sy
metrical with respect to the origin, e.g.,ȳ and2 ȳ are fixed
points. Mathematically, the following conditions should
satisfied:

ȳ2F~ ȳ!50 and 2 ȳ2F~2 ȳ!50.

In other words the following equations should hold true

ȳ5 f oX(
j 51

Nj

wj
of j S ȳ (

i 5nu11

Ni

wji
h D C

ȳ52 f oS (
j 51

Nj

wj
of j S 2 ȳ (

i 5nu11

Ni

wji
h D D .
02670
to

te

s

the
a

o

t-

-

This will happen if and only if all the activation functionsf j
and f o are odd and continuous.

An important consequence of all the activation functio
being odd functions is that if the network has fixed poin
other than the trivial atȳ50, then such fixed point will be
symmetrical with respect toȳ50.

The main results of this section can be stated as follo
For an autonomous MLP network to have a set of fix
points that are symmetrical with respect to the trivial soluti
ȳ50, it is sufficient that all the activation functions be od
and that all bias terms be zero. If the network has only o
fixed point, it will be the trivial oneȳ50. The above condi-
tions are notnecessary, mathematically speaking, because
multilayer perceptron with at least one hidden layer is a u
versal approximator. An ideal training algorithm operati
under ideal conditions would learn symmetry if this featu
were correctly represented in the data. In such a case
instance, the lack of oddness of an activation function co
be compensated by a nonzero bias parameter. In prac
however, training is limited by a number of factors and sy
metry is lost in most cases. Because of this, different train
algorithms will perform differently. However, as symmetry
a structurally unstable property, the lack of ideal conditio
will destroy symmetry irrespective of the particular trainin
algorithm used. On the other hand, it should be apprecia
that the conditions derived in this section guarantee sym
try and not necessarily good dynamical performance.

It should be noticed that the above result holds for a
number of hidden layers and any activation functions as lo
as all of them are odd. Also, the result will still hold in th
case when the network has different activation functions

III. RADIAL BASIS FUNCTION NETWORKS

A. Definition

A RBF model is a nonlinear map, acting on
de-dimensional embedding space, of the form

f ~y!5v01(
i

v i f~ iy2ci i !, ~5!

where yPRde, i•i is the Euclidean norm,v iPR are the
weights, ciPRde are the so-called centers, andf(•):R1

→R is a radial basis function that is usually chosena priori.
Such a function serves as the activation function in R
models and is symmetrical with respect to the origin. If t
functionf(•):R1→R and the centersci are selected before
hand, the weightsv i can be estimated using standard lea
squares techniques@1#.

In many problems of obtaining nonlinear dynamical mo
els from data, it has been shown that it is useful to includ
linear part in the RBF network with autoregressive ter
and, if the system is nonautonomous, with exogenous te
such as

y~k!5v01(
i

Nc

v i f@ iy~k21!2ci i #1(
i 51

ny

aiy~k2 i !

1(
i 51

nu

biu~k2 i !1e~k!, ~6!
1-2
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CONSTRAINING THE TOPOLOGY OF NEURAL . . . PHYSICAL REVIEW E 69, 026701 ~2004!
where y(k21)5@y(k21)•••y(k2ny)u(k21)•••u(k
2nu)#T, Nc is the number of centers, ande(k) is the error.
Model ~6! is sometimes referred to as anaffine plusRBF
@18#.

B. Conditions for symmetry

To begin the discussion on how to impose symmetry d
ing RBF training, let us consider the problem of selecting
centersci in Eq. ~5! which is one of the crucial points in RBF
modeling. In one of the first papers that addressed mode
nonlinear ~chaotic! dynamics using RBF models, th
centers—that need not be observed data—were simply
sen uniformly over the input domain@19#. Smith has briefly
commented on four different ways of selecting the cent
@20#. A procedure that has proven to produce parsimoni
RBF models was described in detail in Ref.@21#. In that
method the candidate centers are taken from the whole s
training data. Subsequently, the centers that when include
the model will maximize the increment to the explained va
ance of the data are effectively used.

For the sake of clarity, consider a one-dimensional R
model composed of only two basis functions. After traini
~parameter estimation! the resulting static nonlinear functio
can be represented as in Fig. 1~a!. For the same reasons a
discussed in the context of MLP networks~see Sec. II! it is
necessary that such a function be odd to guarantee dynam
symmetry properties. In order to constrain the static non
ear function to be closer to an odd function, two steps
taken and will be discussed below.

1. Symmetrically chosen centers

A key point in obtaining an odd static nonlinear functio
based on a RBF model is to have a set of symmetrical c
ters. This has been observed to be useful in global mode
problems even with other model representations@22#. To this
effect, the centers are chosen using any procedure, a
instance the method detailed in Ref.@21#. For each center
chosen based on such a method, a ‘‘mirror’’ basis funct
with its respective center, which is symmetrical with resp
to the origin to the one previously chosen, is added to
model. The mirror center will usuallynot be an observed
data point in the embedding space, but that is not a prob
in RBF modeling@19,20#.

A pictorial representation of this is shown in Fig. 1~b!.
Although the resulting static function is not yet exactly od
there is usually an enormous improvement when compa
to the models for which the centers and respective b
functions are not symmetrical at all.

2. Constrained parameter estimation

From Fig. 1 it becomes clear that in order to have a p
fectly odd static function, it is not sufficient to take sym
metrical centers. In fact, it is necessary that the weights
two given symmetrical centerscj52ci satisfy the condition
v j52v i . This is illustrated in Fig. 1~c!.

Therefore, the problem is to find a model of the form~6!
such that we have the following.

~1! v050.
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~2! Nc is even. Moreover,Nc/2 centers are chosen b
some criterion and the otherNc/2 centers are taken to b
symmetrically placed with respect to the origin. Such cent
are referred to as mirror centers.

~3! The Nc1ny1nu weights of the model should be est
mated in such a way that theny1nu weights of the linear
part are constraint free but theNc weights of the basis func
tions are constrained in pairs to satisfyv j52v i , where i
and j indicate the indices of a given center and its mirr
Apart from the constraintv j52v i , the basis function
weights are free parameters and together with theny1nu
weights of the linear part can be estimated to minimize
given cost function.

In what concerns the static nonlinear function, as far
the property of being odd is concerned, the presence of

FIG. 1. Schematic illustration of how symmetry can be impos
during training of a RBF network. In~a! no restrictions are im-
posed, and in~b! the centers are taken to be symmetrical w
respect to the embedding space but no restrictions on the we
are used. Finally, in~c! besides taking symmetrically spaced ce
ters, the weights of each pair of symmetrical centers are constra
to be such thatv i52v j . Clearly, only in~c! is the functionf (y)
odd.
1-3
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linear part~which by definition yields a static odd function!
will not alter the above requirements. Therefore, the afo
mentioned items~1! to ~3! apply to both RBF and affine plu
RBF models. Therefore, the following model is sought

y~k!5(
i

Nc

v̂ i f@ iy~k21!2ci i #1(
i 51

ny

âiy~k2 i !

1(
i 51

nu

b̂iu~k2 i !1j~k!, ~7!

where the hats stand for estimated parameters or weights
j(k) is the model residual at timek. Taking Eq.~7! over a
window of data, the resulting set ofN equations can be writ
ten in matrix form as

y5Cû1j, ~8!

whereûPRNc1ny1nu is the vector of weights to be estimate
and the regressors matrixCPRN3(Nc1ny1nu) is known.

It is clear that the set of constraints detailed in item~3!

above can be written in the following form:05Sû, where0
is an Nc /2-dimensional vector of zeros andS
PZ(Nc/2)3Nc1ny1nu is a matrix with elements 0 or 1. For ex
ample, suppose the RBF model is composed ofNc54 cen-
ters, ny52 autoregressive terms, andnu51 exogenous in-
put, then the set of constraints

F0

0G5F1 1 0 0 0 0 0

0 0 1 1 0 0 0G 3
v̂1

v̂2

v̂3

v̂4

â1

â2

b̂1

4 , ~9!

which is obviously in the form05Sû, implies v152v2
and v352v4 . Moreover, there are no constraints on t
parameters of the linear part of the model. A cost funct
commonly used in modeling problems is the sum of squa
residualsjTj. Therefore, the solution to the problem of fin
ing a vectoru that minimizesjTj and satisfies the set o
constraints05Sû, that is,

ûCLS5arg min@jTj#,

u:05Sû, ~10!

is given by Ref.@23#,

ûCLS5~CTC!21CTy2~CTC!21ST

3@S~CTC!21ST#21~SûLS20!, ~11!
02670
-
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d

where CLS stands forconstrained least squaresand ûLS is
the standard least-squares solution which is given by the
term on the right-hand side of Eq.~11!.

In closing this section an important remark is made. T
training data for the RBFs when the aforementioned c
straints are imposedremain untouched. In other words, the
constraints are related to the network structure and not to
data.

IV. NUMERICAL EXAMPLES

A. Symmetrically constrained MLP networks

This section will consider the Duffing-Ueda oscillato
given by Ref.@24#

ÿ1kẏ1y35u~ t ! ~12!

with k50.1 andu(t)5Acos(vt). In this work v51 rad/s
and the input amplitude is varied in the range 4.5<A<12 as
a bifurcation parameter. Within this range of values this s
tem displays a rich variety of bifurcations as can be seen
Fig. 2. This figure was obtained by Poincare´ sampling in the
space (@y ẏ#,v)5R23S1 after discarding many cycles in
order to avoid any transients. It should be noticed that in t
system the input and output will always be phase synch
nized. In other systems, however, where phase synchron
tion does not always occur, the sinusoidal amplitude is be
and more rigorously treated as an initial condition rather th
a bifurcation parameter@25#.

This system and the respective bifurcation diagram h
been previously considered in the context of NARMA
polynomials@6# and of wavelet networks and MLPs@10#. In
the latter reference, it was reported that no MLP network w
found that would satisfactorily reproduce the system dyna
ics. A wavelet network—a network with a structure close
a RBF but with wavelet-type basis functions—was obtain
for which a bifurcation diagram quite similar to the one

FIG. 2. Bifurcation diagram for system~12!. At A'6.6 andA
'8.0 a period-3 limit-cycle undergoes supercritical and subcriti
pitchfork bifurcations, respectively. This is a signature of symme
in the system.
1-4
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FIG. 3. Bifurcation diagrams of networks~a! HLL, ~b! HLLB, ~c! HHL, and~d! HHLB. Cases~a! and~c! correspond to networks withou
any bias terms and cases~b! and ~d! to networks with bias terms.
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Fig. 2 was shown@10#. In spite of the clear similarity, saddle
node bifurcations appear instead of the pitchfork bifur
tions. This happens as a consequence of lack of symmet
the network. In the remainder of this section, this asser
will not only be illustrated but also, using the main res
described in Sec. II C, symmetry will be easily imposed
the MLP network during training thus enabling the fin
model to undergo a pitchfork bifurcation.

The following overall network topology was found to b
very competitive:u1(k)5u(k21), u2(k)5u(k22), u3(k)
5y(k21), u4(k)5y(k22), andu5(k)5y(k23); just two
hidden neurons, i.e.,Nj52, one of which was alwaysf 1(•)
5tanh(•), and the other was eitherf 2(•)5tanh(•) or f 2
(•)5 lin( •), where ‘‘lin’’ indicates that the output of this
neuron is a linear combination of the inputs. The output n
ron in both cases is linear, that is, for bothf o(•)5 lin( •).
These two networks are referred to as HHL and HLL, resp
tively, and for them the bias parameters were omitted fr
the topology. Other two similar networks were trained, but
such cases the bias parameters were maintained in the
els. Such networks are referred to as HHLB and HLLB.

Training was performed using a Levenberg-Marquardt
gorithm with ten noise terms to reduce noise influence@26#.
Training was halted whenever the network error achieve
minimum of 1023. The input-output data were the same
used in the context of polynomial models as discussed
Ref. @27#. Such a data set was generated by simulation
02670
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had no noise added. Because training starts with a ran
choice of initial values for the weights, 100 independe
simulations were carried out for each network. Figure
shows typical bifurcation diagrams of one MLP network
each category. As can be seen, the presence of bias pa
eters precludes the network to undergo pitchfork bifur
tions. Also, it must be pointed out that the bifurcation seen
Fig. 3~b! at A'6.6 is not a pitchfork but rather a saddl
node, as illustrated in Fig. 4. Pitchfork bifurcations we
only observed for HLL and HHL networks. No uncon
strained network presented pitchfork bifurcations irresp
tive of the stopping criterion.

A second set of experiments was carried out. This time

FIG. 4. By adding a simple term, the symmetry of the system
broken. In~a! the original branch loses stability giving birth to tw
stable branches via a pitchfork bifurcation. In~b! the original
branch does not bifurcate at all. The second stable branch app
through a saddle-node bifurcation. Such a scenario is observe
Fig. 3~b! at A'6.6.-
1-5
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FIG. 5. Bifurcation diagrams of networks~a! HHHLL, ~b! HHHLLB, ~c! HHHHL, and ~d! HHHHLB. Cases~a! and ~c! correspond to
networks without any bias terms and cases~b! and ~d! to networks with bias terms.
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networks had the number of neurons increased. The re
are summarized in Fig. 5, where the notation follows fro
the previous discussion. Since the data used to train this~see
Fig. 5! second set of networks are the same as for the
works corresponding to Fig. 3, it becomes clear that imp
ing symmetry is still effective. Moreover, in some cas
@compare Fig. 3~b! with Figs. 5~b! and Fig. 5~d!# the lack of
constraints renders the networks less robust to changes i
topology.

B. Symmetrically constrained RBF networks

This example uses the well-known Lorenz system

ẋ5s~y2x!,

ẏ5r x2y2x z,

ż5x y2b z. ~13!

Choosing s510,b58/3, and r528, the solution of
Eqs.~13! settles to the well-known Lorenz attractor shown
Fig. 6.

If a homogeneous window of data on the attractor sho
in Fig. 6 is taken to train RBF models, it is not very difficu
to find good models with approximately symmetrical pro
erties even without any constraints. However, inhomo
neous data are a reality in nonlinear data analysis and m
02670
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the
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eling @20#. In order to address such a situation, the d
shown in Fig. 7~a! were used to train RBF modelswithout
any symmetry constraints. One of the best models found
formed as shown in Fig. 7~b!. Taking the mirror for each
chosen center, a family of RBF models was obtained and
reconstructed attractor of one of the best models in that f

FIG. 6. Bidimensional delay reconstruction of the Lorenz attr
tor from thex variable. This reconstructed attractor has an invers
symmetry.
1-6
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FIG. 7. ~a! Inhomogeneous window of data produced by the Lorenz system. Data produced by a RBF model trained~b! without any
constraints. Model withNc550, de5ny55; ~c! with pairs of symmetrical centers but no constraints on the weights. Model withNc560,
de5ny59; and~d! with pairs of symmetrical centers and constrained weights. Model withNc580, de5ny56.
t
un
in
d

he

du

iz
r
rit

es

n
rk

nd
te

the

m-

on-
per,
mi-

ful
lack
rly

II C
rms

es,
net-
BF

ed
ily is shown in Fig. 7~c!. Although symmetry has somewha
improved, the resulting reconstructed attractor is clearly
symmetrical. Finally, taking centers as before but impos
symmetry constraints during parameter estimation, as
tailed in Sec. III B 2, a family of models was obtained. T
attractor of one such model is shown in Fig. 7~d!, which is
very much symmetrical, as it would be expected.

In all cases the centers were chosen using the error re
tion ratio criterion detailed in Ref.@21#. In order to get a
broad picture in model space, the number of centersNc and
the dynamical order of the modelny were varied over a wide
range of values. No attempt was made in order to optim
the values obtained for such variables. In practice, in orde
aid choosing such modeling parameters, the Schwartz c
rion can be used to choose the number of basis functions@1#
and a modified false-neighbor approach can be used to
mateny @28#.

It is instructive to point out that when parameter co
straints are imposed during the training of the RBF netwo
there are onlyNc/2 ‘‘free’’ basis functions. Therefore, the
model that produced the data shown in Fig. 7~d! ~that has 80
centers! would be equivalent to a RBF with 40 centers a
no constraints in what concerns number of free parame
02670
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This modest increase in network size can be thought of as
price to be paid in order to guarantee symmetry.

Some results on network modeling of the Lorenz dyna
ics were recently published@29–31#. The latter reference is
very informative as far as symmetry properties are c
cerned. Observing the generous amount of plots in the pa
it seems fair to conclude that both measurement and dyna
cal noise preclude the network to learnexactlythe underly-
ing symmetry. In fact, dynamical noise is even more harm
to the symmetry than measurement noise. The obvious
of symmetry in many of the reported attractors can be clea
understood in the light of the results discussed in Sec.
given that the referred authors use networks with bias te
and activation functions that are not odd.

Topological analysis

This section aims to provide more rigorous evidenc
based on topological analysis, that the constrained RBF
work produces, in fact, a symmetrical attractor. The R
model obtained without any constraint@Fig. 7~b!# is topo-
logically equivalent to a modified Lorenz system propos
by Rössler. The modified Lorenz system
1-7
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ẋ5x2y2xz,

ẏ5bx2cy1d,

ż5x22az ~14!

has symmetry properties like the Lorenz system as long
d50. WhendÞ0, the system cannot display symmetry sin
it no longer obeys the relationf(G•x)5G•f(x), where x
5(x,y,z) andG5diag@21 21 1# which defines the rotation
symmetry around thez axis. Whend50, the system has
three fixed points as the Lorenz system. One is a sa
located at the origin of the phase space and the two other
symmetric with respect to the origin. WhendÞ0, one of the
symmetric fixed points disappears and the attractor is
symmetric anymore~Fig. 8!. This attractor is topologically
equivalent to the attractor solution of the RBF model e
mated without any constraints@Fig. 7~b!#. Such an equiva-
lence may be exhibited in a refined way by computing
first-return map to a Poincare´ section defined by the fixed
point located in the left wing@Figs. 9~a! and 9~b!#. Two
increasing monotonic branches are observed. This is a
02670
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particular map quite rarely observed and peculiar to nons
metrical systems. This confirms that the unconstrained R
model is not symmetrical.

When the RBF model is estimated using pairs of symm

FIG. 8. Avatar of the Lorenz system for which the symmetry
broken. Parameters: (a,b,c,d)5(0.1,0.07,0.38,0.0015).
ts

FIG. 9. First-return maps to a Poincare´ section for~a! the asymmetric avatar of the Lorenz system and~b!–~d! for the different RBF

models obtained.~b! Map computed for a RBF model trained without any constraints,~c! with pairs of symmetrical centers but no constrain
on the weights, and~d! with pairs of symmetrical centers and constrained weights.
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FIG. 10. Image of the attractors of the RBF model trained~a! with pairs of symmetrical centers but no constraints on the weights and~b!
with pairs of symmetrical centers and constrained weights.
c
us
it

a
su
ur
r

lp
y

ing
m
r-

te

he
ig
rd
e
ig
re

he
a

m
m
ar
d

rn
e.
a

ig.
by

red
e-

the
tly

n-
he-

pro-

ll-
est.
m-
of

nse,

ther
he
-
ad
mi-

of
and
e
ks,
a in
for

cil-
ble

n

ric centers, both wings of the attractors are visited@Fig. 9~c!#.
To the eye the attractor looks symmetric. In order to che
that carefully, an analysis in the image of this attractor m
be performed. An image of a symmetric attractor is one of
representations without any residual symmetry@32#. When
the symmetry is exact as for the Lorenz system, a Poinc´
section of the image of the Lorenz system provides the u
Lorenz map. When the symmetry is not exact, the first-ret
map exhibits a layered structure as observed for data
corded on an electronic Chua’s circuit@33#. Thus, computing
a first-return map in the image of a symmetric attractor he
to accurately check the quality of the symmetry of the d
namics.

An easy way for constructing the image of the attract
solution of the RBF model estimated from pairs of sy
metric centers@Fig. 7~c!# is to apply the coordinate transfo
mation

ut5xk
22xk1t

2 ,

v t52xkxk1t ,

wt5xk12t
2 , ~15!

which defines a local diffeomorphism from the reconstruc
phase spaceR3(xk ,xk1t ,xk12t) into its image space
R3(ut ,v t ,wt) @32#. The image attractor corresponding to t
RBF model with pairs of symmetric center is shown in F
10~a!. The Poincare´ section is then computed in a standa
way. The image first-return map exhibits clearly a layer
structure. The departure from the symmetry is still quite s
nificant in this model. The contributions of each wings a
obviously organized in two different ways. In particular, t
right wing has three monotonic branches; the small incre
ing one is not present in the original dynamics@Fig. 9~c!#.

When the RBF model is estimated using pairs of sy
metrical centers with constrained weights, the model sym
try and dynamics are significantly improved. In particul
the image attractor@Fig. 10~b!# presents a hole as expecte
from the original dynamics. The attractor@Fig. 7~d!# presents
02670
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a perfect symmetry, well confirmed by the image first-retu
map @Fig. 9~d!# since there is no longer a layered structur

Finally, whensymmetricaldata are used in the training
very good model can be estimatedwithoutconstraints, as can
be seen in Fig. 11. The first-return map displayed in F
11~b! reveals that the Lorenz cusp is better represented
the network trained from symmetrical data when compa
to the networks trained with unsymmetrical data and symm
try constraints. It should be pointed out, however, that
network that produced the results in Fig. 11 is not exac
~i.e., mathematically! symmetrical.

V. DISCUSSION AND CONCLUSIONS

Symmetry is important in a number of situations, for i
stance, in order to reproduce some particular nonlinear p
nomena such as pitchfork bifurcations and some chaos
ducing mechanisms@34#. In order to illustrate the application
of the symmetry constraints for MLP networks, the we
known Duffing-Ueda oscillator was used as a bench t
Many simulation results have confirmed that imposing sy
metry on the network increases significantly the number
networks that reproduce the desired dynamics. In a se
symmetry of the flow can be thought of as adynamicalcon-
sistency hint analogous to statistical hints proposed by o
authors@35#. When such constraints were not imposed t
outcome was thatno identified network was able to repro
duce the pitchfork bifurcation, although some networks h
saddle-node bifurcations instead, which actually had a si
lar appearance@compare Figs. 3~a! and 3~b!#. The need to
use odd activation functions in MLP networks for the sake
symmetry has been previously observed by Bagarinao
co-workers@11,36#. On the other hand, in order to illustrat
the use of the symmetry constraints for the RBF networ
the Lorenz system was used. In particular, a set of dat
which the symmetry was not well represented was used
network training.

In a recent paper that considered the Duffing-Ueda os
lator @10#, it has been reported that the authors were una
to find a MLP network with sigmoidal activation functio
1-9
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FIG. 11. Results obtained with a RBF network trained from symmetrical data but with no symmetry constraints whatsoever.~a! Image
of the attractor,~b! first-return map on which the data on the left and right wings are very difficult to distinguish.
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that would display the same sequence of bifurcations as
original system. A possible explanation for the reported fa
ure is that the authors used sigmoidal activation functi
which are not odd, as required by the results in Sec. II C
such a case, even if the bias terms were omitted, symm
would not be guaranteed. The relevance of the results in
II C is highlighted by the fact that the sigmoidal and relat
activation functions are the most frequently used@37#.

It is important to notice that, mathematically, the remov
of the bias terms and the choice of odd activation function
not necessary since a MLP network with one hidden laye
a universal approximator. What is necessary is to satisfy
~3! exactly. In practice, however, this is very difficult t
achieve because training is nonideal. A simple practical
lution to this problem seems to be the removal of bias te
in addition to the choice of odd activation functions. If on
odd functions are used, there is still no guarantee that
resulting networks will have exactly symmetrical fixe
points. In fact, even using odd functions pitchfork bifurc
tions could not be reproduced and have been classifie
being more difficult to reconstruct when compared to ot
bifurcations@36#.

The same reasoning of the preceding paragraph applie
RBF networks which are also universal approximators. T
constraints that have been developed and proposed in
paper do not add to the network extra abilities~if this were
the case it would be contradictory to the fact that such n
works are global approximators! but rather they restrict the
A

A
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network in such a way that learning becomes easier and
ally more successful in especially hard problems. Witho
imposing symmetry the resulting networks were not p
fectly symmetrical but otherwise produced attractors tha
the eye seemed accurate.

The greater potential for the techniques presented in
paper is for those cases when prior knowledge of the sys
being symmetrical is available and such a feature is not w
represented in the set of data used for training. It is wo
pointing out that in some cases the measured data ca
transformed in such a way as to be symmetrical. If this w
the case, the techniques developed in this paper could
used on the transformed data.

It is believed that the relative lack of knowledge abo
how network models relate to the dynamics could partia
explain their limited use in modeling nonlinear dynami
when symmetry-related issues are important. This paper
shown sufficient conditions that if satisfied by the topolo
of a MLP network will guarantee symmetry of fixed point
Similarly, a procedure for ensuring symmetry in RBF ne
works has been proposed. Such results should prove he
to the wide body of network users who intend to use t
type of models to reproduce specific nonlinear phenom
with symmetry properties.
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