Chaos in variable stars: Topological analysis of W Vir model pulsations
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The topological characterization of chaos is applied to the irregular pulsations of a model for a star
of the W Virginis type, computed with a state-of-the-art numerical hydrodynamical code. The
banded W Vir attractor is found to possess an additional twist when compared toshleRmand.

It is shown that the stellar light-curve contains the same dynamical information about the attractor
as the stellar radius or as the radial velocity variations1996 American Institute of Physics.
[S1054-150(06)01303-1

From a chaotic time series generated by a low- may reconstruct from atime series a state space equivalent to
dimensional dynamical system one can extract the lowest the original state space. In the case when the underlying
unstable periodic orbits. The relative topological organi- temporal behavior is chaotic, a reconstructed chaotic attrac-
zation (twisting) of these orbits can be exploited to char- tor is then obtained.

acterize the dynamical attractor. In the present paper we The paper is organized as follows. In section II, we in-
explore the usefulness of this topological method for troduce the topological characterization procedure on the ex-
problems in astronomy by analyzing first as a sample ample of the Resler system. This section is essentially of a
problem the well-known Rassler dynamical system and pedagogic character to introduce concepts to be used later.
then as a more realistic example numerical data from a  Section Ill provides a complete topological analysis of the
hydrodynamical model of an irregularly pulsating star. attractor induced by the stellar radius time series. In section
Our ultimate purpose is the application to the light IV the equivalence between the three variables output by the
curves and radial velocity curves of variable star data. code is discussed from a dynamical point of view, and sec-
tion V presents a conclusion.

I. INTRODUCTION

Observations and theory have shown that in classical. TOPOLOGICAL CHARACTERIZATION
variable stars such as the Cepheids and RR Lyrae stars, the .
In the last few years several works discussed the topo-

ulsations are often periodic, to good accuracy. When they . o : ; .
P P g y Yog|cal description of chaotic attractors. In particular the idea

are multiperiodic they just involve a couple of frequencies.h . that tiract be d ibed by th |
In contrast, the pulsations of many of their more luminous as arisen that an attractor can be described by the popu’a-

and metal poor Population Il cousins are irregular with pul-tion_ O_f pgriodic orbits, their relat_ed sy_mbolic dynamicg and
sation pseudo-periods larger than 15 days. In the last decaalg,gl.; Ilnklngbnumbers;. n trllreget dlzjnensmnal ca?Fs,trﬁ)erlodlc
an extensive hydrodynamical survey of models of W Virgi- Orbits may be viewed as knatand, consequently, they are
nis type stars with numerical codéshas shown that the robust with respect to smooth parameter changes allowing

pulsations of the Population Il objects are in fact chaotic int_he deﬂrgtl]?n oftfcopologlcal invariants under isotofgon-
the dynamical sense of the word. The dominant clue pointingjInuous eformation

to the chaotic nature of these pulsations comes from the fact The topological approach is based on the organization of

that, as a control parameter is varied, namely the equilibriun‘?er.IOdIC orbits. We now present th? basic cpncepts of topo-
effective temperature of the models, the pulsations display gical characterization and symbolic dynamics. For the sake

period-doubling cascade that is a route to chaotic dynamicgf simplicity, we use the well-known Rsler attractor as an

(for a review, see Ref.)3 example.

In this paper, we study the irregular pulsations of a WA. Template
Vir model computed with a state-of-the-art hydrodynamical . . '
code. Such a code provides the time series of three different The Rssler systerhis defined by the ODEs
variables, namely the stellar radius, the radial velocity and  yx— _y_,
the luminosity. Our effort is devoted to the topological char-

acterization of the different representations of the attractor as y=x-+ay, )
given by each of these three variables. Indeed, by using a

reconstruction method introduced by Packaal,* one z=b+2z(x—c),
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This convention allows an unambiguous description of

& b the template by defining a linking matfias follows. Diag-
onal elementdM(i,i) are equal to the number af-twists
n number of theith strip and off-diagonal elementd (i,j),
i #] are given by the algebraic number of intersections be-
tween theth and thgth strips. One may then check that the
Rossler template is defined by the linking matrix

D strip 0 D strip 1 : upper face M E( 0 1) . (2)
. strip 1 : lower face -1 -1

Each strip may be labelled: symbol 0 designs the simple
strip while symbol 1 is associated with the strip which pre-
sents a negativer-twist. By this way, trajectories are en-
coded by a string of “0” and “1.” In particular, periodic
where a,b,c are the control parameters. When orbits may be encoded in a one-to-one way. We have thus
(a,b,c)=(0.398,2,4) the asymptotic motion settles down ondefined a symbolic dynamics. This procedure requires a pre-
to a strange chaotic attractor. cise partition of the attractor which is given by a first-return

The attractor may be viewed as a simply stretched andnap to a Poincarsection.
folded band. Two different strips may be exhibited from this
attractor(Fig. 1) (i) one which is located in the center of the
attractor is a very simple strip without amtwist [Fig. 1(a)] )
and (ii) a second strip which presents a negativewist A Poincaresection is defined as the set of intersections
[Fig. 1(b)] and is therefore similar to a Mcebius band. Weof a chaotic trajectory with a plane transverse to the flow. For
may thus distinguish two topological regions on the attractorthe R@sler system, a suitable Poincaection is given by
_ Following a pioneering paper by Birman and Williafhs, P={(y,z) e R2x=x_ x>0}, 3)
it has been showt?° that a template which encodes the to-
pological properties of an attractor may be built in wherex_=(c— yc“—4ab)/2 is thex-coordinate of the cen-
3-dimensional state spaces. Such a template provides a vid#@l fixed point!°
of the attractor that conveniently exhibits the different strips ~ The first-return map is computed with tiyevariable. It
within the attractor and their relative organization. From thepresents two monotonic branches : an increasing branch as-
Rossler attractor, a template consisting of two strips is thersociated with strip 0 and a decreasing branch associated with
extracted and displaydéFig. 2@)]. The band is split into two strip 1. The critical pointy. which separates the branches
strips, one without anyr-twist and one with a negative Precisely defines the partition. In our caggs= —3.04. Thus,
m-twist [Fig. 2@)]. Following a standard insertion €ach intersectiog; with the Poincargolane corresponds to a
conventior?, strips must be reinjected into the bottom bandcodeK(y;) given by

FIG. 1. The two strips of the Rsler attractor.

B. First-return map

from back to front, and from left to right. Consequently, a 0 if y>y

permutation between the strips is required, thereby leading to  K(y;)= . e 4)
Yi

[Fig. 2(b)]. Lot yisye:

Once periodic orbits are extractéith the present work
by using a Newton-Raphson iteration schemperiodic
points in the Poincarsection may be encoded. An orbit of

@) — b) = periodp hasp periodic points and is represented by a string
S of p-codes
L, S=K(y)K(y2) .- K(¥p),

wherey;’s are they-coordinates of the periodic points.
‘l C. Unimodal order

Each periodg point is represented by a symbolic se-
quence ofp symbols. Theith point of a periods orbit is
labelled by the string

S=K(YiK(Yis1) - - K(yp)K(y1) . . . K(Yi-1). 5
All periodic points are then ordered by the unimodal

<— equivalence—>

order!12
FIG. 2. Template of the Rusler attractor. A permutation between the strips I_DEﬂn'_Uon 1. The unimodal ordex ; on the symbol set
is required by the standard insertion convention. 0,1 is defined as follows.
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Let us consider two symbolic sequences Pruning Front
1.00 T

W1=0'10'2 OO -

and T S ome
Wo=7T1Ty .. . TTis1 -+ +» - e
1o woamn W

whereo;’'s and 7j's designate the codes. Suppase- 7; for 2 060 | - e !

alli<kandoy # 7. LetW* =04 ...0¢_1=71...7k_1 bE
the common part betweeW; andW,. We say that a string

. i : . a0 | =y omam
0105 ...04_1 is even (odd if the sum =K is even 040 =g
(odd), and thatWw* is even when no common part is found |
betweenw,; andW,. Then, we have 0.20 . , L
0.20 0.40 0.60 0.80 1.00
W;<;W, if W+* iseven and o<y, o
W;<;W, if W* isodd and <oy, FIG. 3. Symbolic plane of the Rasler attractor: The orbit spectrum is gov-
Wap< W, if W* isodd and < Ty E;nchir?g. the unimodal order as shown by the pruning front well-estimated
Wo<,W; if W* iseven and n<oy.
WhenW,; < ;W,, we say thaV, impliesW;. Symbolic coordinates which span a symbolic plane are

A periodp orbit will be denoted by the symbolic se- then defined on the future and the past as follows:
guenceW, which implies the p— 1) others. This sequence is b i
noted @;), with parentheses, and is called thebital se- x (S)=E 9', where b:z o (mod2
guence Two orbital sequences may also be ordered follow- 7 =2 = ’
ing the unimodal order. When the orbital sequenté,X b i1 (6)
implies the orbital sequencé\(;), we say that {V,) forces _ Ci _
(W;) and we note ;) < ,(W,) where< , is the forcing y(,(s)—;l 2 where Ci_,—zo o-j (mod3,
order. By this way, all periodic orbits are ordered. The or-
bital sequence which forces all orbital sequences extracte‘@(here
from the attractor is called thkneading sequencéVithin S=0_p...0_30_20_100010203...0p.

the Rasler attractor, the kneading sequefeong the or- If sis an infinite symbol string generated by a chaotic

bits of period less than 12s found to be(1011110101p'° . s =Y O
All orbits forced by the kneading sequence are found to bé)rb't’ thenD is infinity in the above definition. HOWTYfr’

. . . since we are dealing with finite data sets, Tufillaoal
present in the attractor up to period 11 included, at least. . . ; .
approximate the symbolic plane coordinates of a point by

taking D =16. In this way, we can use a finite symbol string
from a chaotic trajectory to generate a sequence of points on
D. Symbolic plane the symbolic plane displayed. The symbolic plane for the

With numerical systems, an orbit spectrum is alwaySRbs_sler attractor is given in Fig. 3. _In the present case of_an
well-known, but within the limits imposed by round-off er- orbit spectrum governed by the unimodal order, the pruning

; ; ; (14,16
rors (since orbits are extracted by integrating the vectorfmntT'hS swtatt))lyl_estlmaé(_ad by aLmE' ina f I
field). Nevertheless, in the case of experimental data, peri- e symbolic coordinat,, of the pruning front allows

odic orbits are extracted from a time series by using a closesS t0 determine the kneading sequence. Indeed, after having

return method in a reconstructed phase space. Due to tﬁ:é)mputed the orbital sequences of periodic orbits, the knead-

limited amount of data and to the influence of external noise!"9d S€duence 1s associated with the orbital sequence whose

the orbit spectrum is rarely well-known. In particular, as X 'T clohses;FO tlhe prunmgr:‘ront. ing f i | d
shown by Tufillaroet al,*® the population of periodic orbits n the Rasler case, the pruning front is located at

crucially depends on the length of the time series. ConseXs—0-8376. From the orbit spectrum of the $3ter attractor,

guently, the determination of the kneading sequence is rathépe kne_ading sequence s founq o (l‘l@llllOlOltho_se
inaccurate when using short experimental time series. symbolic coordinate is 0.8375 in good agreement with the

Fand” has shown that an empirical proced(atso used pruning front location. In the case of experimental data, the
by Tufillaro et al3) may however exhibit the pruning front symbolic plane will be systematically used to check the orbit

introduced by Cvitanovic and, consequently, the kneading spectrum.
sequence. To explain this procedure, let us first recall that a -
chaotic trajectory forms a string E. Template validation

A template of the Rssler attractor has been given in
section Il A and the orbit spectrum is extracted. The template
where oy is the presentg_;’s the past andr;’s the future  must now be checked by comparing linking numbers pre-
(i>0). dicted by the template and the ones counted on the attractor.

S=.. .0 _30_20_100010203 ...,
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FIG. 6. Layering graph betwedn) and(1011). Lower base is given by the
unimodal order of periodic points. Upper base is obtained by using a reverse
permutation of periodic points of strip hose symbolic sequences begin
by a “1") since strip 1 has a odd number eftwists. Periodic points of
strip 1 are thereafter permutédgain by using a reverse permutadievith

oL ; . ; periodic points of strip 0 since the intersection numiigdrl,0) between strip
The |Ink|ng numbe“'(Nl’NZ) of an orbit pair IS given 1 and strip 0 is odd. The layering numidég,(1011,1) is equal to the sum

by the half-sum of 'Fhe oriented UOSS!t’@G”OWII’lg the con- 4t the intersections betwedn011) and (1) (self-intersections are not taken
vention, given in Fig. 4, due to Melvin and Tufilld&)oon a  into account HereN,,,(1011,1) is null.

regular plane projection of orbitd; and N,. For example,
linking numberL(1011,1) is equal te-2 (Fig. 5). . ) o o

A comparison with the linking number(1011,1) pre- As the template which carries the periodic orbits is iden-
dicted from the template is achieved by using an algebraiéiﬁed’ the organization of the orbits within the attractor is

relation between symbolic dynamics and linking matrix ac-<nown. For a complete discussion about equivalence be-
cording td” tween periodic orbits embedded within a strange attractor

and orbits of the template, see Ref. 18.

1 From a practical point of view, depending on the com-
L(N1.N2) =3 ,21 ]Zl M(i,0))+Nia(N1.N2) |, (7) 5jexity of the dynamics, the number of points per cycle may
) ) be taken from 20 in the case of very simple dynamics like
whereN; andN, are two orbits of periog; andpy, respec-  the simple Resler band up to 200 or more when the dynam-
tively. Also, M(o7,07) are the linking matrix elements and jcq requires many symbols for its description. In other words,
Nlay(leNz) is the Iayenr_lg ngmber determined by using aihe amount of data available determines the knowledge of
layering graph(sketched in Fig. 6 for the coupla011,3,  {he orpit spectrum which may be gained, high period orbits

FIG. 4. Crossing conventioifa) positive crossing anth) negative crossing.

P1 P2

see Ref. 17 for details _ requiring more data. For low period orbits which are usually
In the present case, we obtain sufficient to specify the orbit spectrum with a reasonable
1 accuracy, 50 to a few hundred characteristic cycles, with as
L(1011,3=5[3M(1,) +M(1,0)+ Ni5,(1011,1] few as 20 data per cycle, may be sufficient for an accurate

enough characterization of the attractor, making the theorist
requirements compatible with limited experimental observa-
tions. The acceptable noise level depends on the structure of

. he linki , ‘ h the attractor, i.e., whether it possesses a large number of
€., t.e inking numbet.(1011,1) predicted from t.e tem- strips with many-twists. Clearly a lower noise level is
plate is the same as on the attractor. The template is theremfgquired with more strips

compatible with the attractor. For utmost rigor, a few linking
numbers are needed to completely check the template.

=%[—3—1+0]=—2, (8)

I, W VIR ATTRACTOR ANALYSIS
A. The model

The W Vir model considered here, namely model D5200
of Ref. 2, is a realistic and state-of-the-art model in so far as
it contains all the complications that arise both in the equa-
tions of state and in the opacity due to partial H and He
ionizations. The star has a mass of &, a luminosity of
500L5, a hydrogen abundaneé=0.7, and a heavy element
abundanceZ=0.005. This particular model is chosen be-
cause it generates quite irregular pulsations, exhibiting an
almost fully developed chaos whose behavior appears, at

~t least superficially, to be similar to the Bsler band behavior.
Three time series are provided by integrating the hydro-
P dynamical code, namely the stellar radiB¢t), the radial

4 2 0 2 ‘ 6 surface velocityyg(t) and the luminosityL(t). These vari-
ables are displayed in Fig. 7, with a sampling time

FIG. 5. Plane projection of the orbit coup(#011,). The linking number &221045’ l.e., ~0.02x the _perIOd or cycllr!g tlme. .
L(1011,1)= J —4]=—2. Crossings are signed by inspection on the third A global fllgW reconstruction from _the radius time series
coordinate. by Serreet al** showed that the chaotic attractor is not only
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FIG. 7. Time series of the radidg, the radial velocity g and the luminos-

ity L of the star. FIG. 9. Four different Poincarsections of theR-induced attractor which
show the nontrivial structure of the stretched and folded band.

embeddable in 3D, but that it also has a global physical
dimension of 3. Furthermore from a Computation_ of tthuenceS Corresponding to orbits Starting at primary tangen-
Lyapunov exponents they showed that the chaotic pulsacies. Such an analysis has recently been provided by Fang in

tionalibehavior is characterized by a fractayapunoy di- the case of the Heon map by using a symbolic plane to
mension equal to about 2.02. They embedded the attractor ixhibit the set of kneading sequencégor instance, such a
a 3D space spanned by delay coordirfdtes partition is displayed on Fig. 10 for the 'Hen map with

[R(1),R(t+ 7),R(t+27)}, a=1.4 aridb=_0.3. One may rgmark that the partition is not
i _ ~necessarily given by the maxima of the layered structure.

where 7=156t is the time delay. The corresponding  ynfortunately, the extraction of primary tangencies re-
R-induced attractor is displayed in Fig. 8. quires the knowledge of the equations governing the Poin-

On the projection of the attractéFig. 8), it appears that  caremap of the dynamical system. Consequently, we cannot
the dynamics of the W Vir attractor is rather weakly dissipa-gasily determine a perfect partition of tReinduced attrac-
tive when compared to the Bsler dynamics. Such a weakly tor, and periodic orbits in principle cannot safely be encoded.
dissipative behavior is clearly exhibited in Poincaeetions,  \oreover, the first-return map to the Poincarection P
as displayed in Fig. 9. defined by

In weakly dissipative cases, Grassbergeal 2! showed .
that a good partition should pass through primary tangencies Pr={R(t),R(t+7) € R*|R(t)=R(t+ 7),R>0} 9
between stable and unstable manifolds. This is a generalizgypipits a layered structur@ig. 11) which is a signature of
tion of the fact that the generating partition for the logistic 5 \eakly dissipative dynamics when compared tcsser.
map passes through the critical point. The kneading sequenggayertheless, two branches may be clearly approximately
which forces all sequences of periodic orbits present withineypinited and a single critical poirR, may be defined at
the attractor is therefore replaced by a set of kneading se-

32500
27500
g
/l-'\ -~
L 22500 + ! F
3 v //
02t 0 e
17500 | o
_— -~
04 .
-2 -1 0 1 2
12500 : : :
12500 17500 22500 27500 32500 ¥n)
R(1)
FIG. 10. Partition of the Heon map by the primary tangencies between
FIG. 8. Projection of the attractor in the plane definedR{y),R(t+ 7). stable and unstable manifoldsa(p) =(1.4,0.3)).
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FIG. 11. First return map to the Poincasection P of the R-induced

attractor. FIG. 12. Symbolic plane of th&-induced attractor. A few periodic orbits

are reported. The pruning front may be approximated by the dashed line.
One may remark that the neighborhood of the orbit encode(lpis not
R.=24900. Indeed, Fang has shown that symbolic sewell visited by the trajectory. This fact explains the relatively large distance
quences with small period can be described by the unimod&f ¢10se return for this period-1 orbit.
order in many systems whose dissipation rate is not too

large1®?2

According to this map, a template consisting of two caresection is too small to provide a very accurate knowl-
strips could possibly synthesize theinduced attractor of edge of the population of periodic orbits. For instance, the
the W Vir model. Examining the Poincasections of Fig. 9 period-1 orbit encoded byl) is found with a close return
which provide other points of view on the attractor, it ap- distance of 3.3%. Such a distance is rather large for a
pears that the use of two strips to propose a template cgferiod-1 orbit. Actually, due to the limited time series length
only be an approximation. Furthermore, the maps are noind available initial conditions, the trajectory does not visit
unidimensional. We shall, however, see that a two-strip apyell the neighborhood of this orbit. In particular, for short
proximate template will nevertheless provide pertinent infortime series, the probability of visiting the neighborhood of a
mation, valid for periodic orbits of small periods. given orbit sensitivity depends on the initial conditidis.

We first define a partition based on the first-return map According to the unimodal forcing Order' the kneading
displayed in Fig. 11. Periodic orbits are hereafter extractedequence of theR-induced attractor is given by10110).
by using a close recurrence techni¢fiend encoded by a Thys, the saddle-node bifurcation which creates the pair of
symbolic dynamics with codes period-3 orbits encoded b§101) and (100 has not yet oc-

0 ifR<R., curred, explaining why no period-3 orbit is found within the

_ (10) attractor (for more details, see Ref. 240ne may also re-

1 fR>Rc. mark that the period-8 orbit encoded k0111110 is not

The population of periodic orbits is reported in Table 1. found within the attractor although it is forced by the knead-
Let us note, however, that the number of points in the Poinind sequencéTable ). This is not very surprising since the
longer the periodic orbit, the lower the probability to detect
it.'2% In order to check previous statements, the symbolic
plane is computed and displayed in Fig. 12.

TABLE I. Population of periodic orbits within th&-induced attractoAg
and theL-induced attractoA, . When a periodic orbit is found, the close

: _ _ ) The pruning front is well approximated by a line located
return distance is reported(in % of the attractor sige at = 0.8499. As the leading symbolic coordinate
Ag AL @ 10110~ 0.8485, the kneading sequence is here confirmed.
Period (W) €% €% Moreover, as the leading symbolic coordinatgo, is equal
1 1 3.3 13 to 0.8571 and, consequently, is greater thgn(Fig. 12,
2 10 2.3 0.3 period-3 orbits are not present within the attractor.
3 One may remark that the neighborhood along the line
4 1011 0.4 11 approximating the pruning front is not well visited for high
5 igﬁé f'g i; B-values, a fact which could indicate the existence of a mul-
6 101110 01 03 timodal order. Nevertheless, due to the limited time series
101111 2.4 3.3 length, it is rather delicate to definitely state about the pos-
7 1011111 0.1 3.0 sible occurrence of a multimodal order to govern the popu-
1011110 0.1 0.1 lation of periodic orbits. It is also true that the first-return
8 igiﬂgig 1.0 10 map exhibits a layered structure but the amount of data is too
10111111 0.4 0.2 small to resolve this issue. In practice, considering the results

obtained, it is sufficient to assume that the dynamics is gov-
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FIG. 13. Mask of theR-induced attractor. Two strips are exhibited. Strip 1
presents a negative-twist and strip O undergoes successively through one
positive and one negative-twists. Equivalence

Strip 1

FIG. 14. Template of th&-induced attractor. The global torsion may be
erned by an unimodal forcing order. With this aSSumptionreduced within the nbbop graph. The proposed template is represented with
. . . . respect to the standard insertion convention.
which is clearly an approximation, we are able to character-
ize the attractor in a sufficient way. Furthermore, a more
refined description would necessitate a deep understanding 011,19
of topological characterization in the case of weakly dissipa-

. N 1
tive systems. Such an understanding is still beyond reach. _ E[SM(1,1)+4M(1,0)+M(O,O+N|ay(1011,10]

1
B. Template extraction = E[ +3+0+3]=+3

In view of Fig. 11, we assume that the first-return map
consists approximately of two monotonic branches. The
R-induced attractor must therefore be divided into two dif-L(10111,10
ferent strips. The first, labelled 0, with an even local torsion, 1
is associated with the increasing branch, and the second, la- = -[4M(1,1)+5M(1,0)+ M(0,0)+Nj4(10111,10]
belled 1, with an odd local torsion, is associated with the 2
decreasing branch. By building an approximate mask of the
attractorAg, one can easily exhibit the two strigBig. 13. = §[+4+O+O+4]= +4,

This mask is approximated in the sense that Rhimduced

attractor is reduced to a thin stretched and folded band, i.ewhere the layering numbers N;,(1011,10) and
does not take into account the layered structures exhibited dNj,,(10111,10) are given by the layering graphs displayed in
the Poincaresections displayed in Fig. 9. Fig. 15.

Under a revolution on the attractor, strip 1 presents one The pairs of periodic orbits are displayed on plane pro-
positive 7r-twist while strip 0 undergoes successively onejections(Fig. 16 where oriented crossings are counted. The
positive and one negative-twist, i.e., has a zero local tor- linking numbersL(1011,10) and_-(10111,10) are found to
sion. This mask may therefore be synthesized by a templatee equal to+3 and+4, respectively. Template predicted and
which has one positive global torsion and two strips. One ofounted linking numbers are therefore found to be equal.
which has a negative localr-twist (Fig. 14. The  Linking numbersL(10,1) andL(1011,1) are also found to
R-induced attractor has therefore an additional globabe equal to the template predictions. Nevertheless, by com-
wr-twist when compared to the Rsler band. As displayed in puting many oriented crossings for higher period orbits we
Fig. 14, the global torsion may be reduced within the ribbonhave noted that a few of them are found with a sign opposite
graph. to the template prediction. Such reversed oriented crossings

The template is defined by the following linking matrix: are a signature of the layered structure which is not taken

into account by the template. Nevertheless, this layered
00 structure has been found to be irrelevant on the relative or-

M= 0 1 ganization of small period orbi{&t least up to period)5i.e.,
linking numbers of small period orbits are in agreement with

The template has now to be checked by comparing linkthe template predictions. Consequently, the proposed tem-
ing numbers predicted by the template with linking numbersplate is a good synthesis of the topology of tRenduced
computed on a plane projection. For instance, we obtain attractor. We also note that the topology of the attractor in

. 11
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FIG. 15. The layering graphs of the pdit011,10 and (10111,10. (a)

Niay(1011,10)= +3. (b) Njoy(10111,10)= + 4.

the space spanned by the three coordinRtesz andL has
been found to be the same as for Rénduced attractor.
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C. Equivalence between the different variables

According to the embedding theor&hit should be pos-

400000

300000 -

Lit+1)

200000

100000

0 100000 200000 300000 400000
L)

FIG. 17. L-induced attractor projected on the plane spanned by
{L(t),L(t+ 7)}) where the time delay is equal to 15t.

enough. However, every variable of a given system may not
contain all the pertinent information about the dynamical be-
havior when one is forced to use low dimensional phase
spaces, as exemplified by two of ¥%sSuch is usually the
case when one deals with topological characterization which
is limited to 3D-phase spaces. Thus, the case of the radial
velocity vg and the luminosityL must be investigated, if
only as a check of our previous results.

The case of the radial velocityg of the stellar surface is

sible to use any physical variable for the reconstruction agasy to solve since it is shoffhthat derivative coordinates
long as it is generic and the embedding dimension largeye equivalent to delay coordinates. The velogity being

32500

32500

27500 -
-
o
L 22500 ¢ .
L -
17500 il
T+ --=- (10)
— (1011)
12500 L L L
12500 17500 22500 27500
(a) R(1)
32500 T T
27500 Bl
°
22500 - —
B 1
17500 - \ _
= - (10
+ —— (o111
12500 L L L
12500 17500 22500 27500

(b) R(t)

FIG. 16. Plane projection of two pairs of periodic orbit$a)

32500

L(1011,10)= 3(—3+9)=+3. (b) L(10111,10) 5(— 3+ 11)= +4.

the time derivative of the stellar radi& v g-time series thus
contains the same information about the dynamical behavior
as theR-time series.[In the specific discrete Lagrangian
hydro-code the velocity and radius are actually related by
R(t+At)=R(t) + 3 At(vr(t+At) +vg(t)), whereAt is the
numerical time-step, i.e., by a linear reshuffling of the vari-
ables which makes the equivalence even more straightfor-
ward]

While the R- or vi-time series are smooth enough, the
temporal behavior of the luminosity, is very jittef¥ig. 7)
because Lagrangian hydrocodes have great difficulty in re-
solving the motion of the shand partial ionization regions.
As seen from Fig. 17, one then expects more difficulties in
studying theL-attractor than theR-attractor, a fact which
could possibly be improved in the future by using an adap-
tive hydrocode. It is therefore of particular interest to check
whether thel-induced attractoA; reconstructed in a 3D
space by a time delay method can be found to be topologi-
cally equivalent to thdR-induced attractoAg.

As for the attractoAg, we begin the study by defining a
PoincaresectionP, here

P ={L(t),L(t+7) e R?L(t)=1.7 18,
: (12)
L(t+7)>1516, L<0}

which is chosen for its computational advantages. A first-
return map is thereafter built and displayed in Fig. 18.

Periodic orbits are extracted and encoded according to a
symbolic dynamics which is given by

CHAOS, Vol. 6, No. 3, 1996

Downloaded-09-Jul-2001-t0-132.239.1.230.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/chaos/chocr.jsp



474 Letellier et al.: Chaos in variable stars
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FIG. 18. First-return map to the PoinCasectionP, . A critical point ~ FIG. 20. The small sampling rate and the presence of many erratic oscilla-
L.=291000 splits the map in two branches. tions prevent a correct counting of oriented crossings.

orbits when one period in the pair is larggreater than or
equal to typically 4. For instance, a plane projection of the
pair (1011, is displayed in Fig. 20. The small sampling rate

. . o . and the presence of many erratic oscillations prevent the de-
The population of periodic orbits is reported in Table It&-rmination of the linking numbelr(1011,1).

and is found to be exactly the same as the one obtaine Consequently, only the pail0,1) can be used to com-

within the R-induced attractor. In the computation of the o . ) .
symbolic plane associated with theinduced attractofFig pl.Jte. a linking number sm_ce.per|od-3 orbits are not. present
"~ . within the attractor. The linking humber(10,1) predicted

19), the pruning front is better approximated by a line than in . .
the casepof thég—induced attractg):O although tmeyattractor is by the R-induced template is
more jittery than theR-attractor. This fact actually confirms
the sensitivity of such an analysis to the initial conditions of
time series when short time series are used. Consequently, it
is here confirmed that the dynamics of the W Vir model is
governed by an unimodal forcing order for the studied con-
trol parameter. The pruning front is located = 0.8499
which is again a little bit greater than the leading symbolic
coordinatea 19110)- From the orbital point of view, both at-
tractorsAr andA, therefore contain the same information.

We have now to check whether theinduced attractor
possesses the same topology asRheduced attractor. Due
to the parasitic oscillations of the luminosity, we cannot

J

0 ifL<L,,

1 ifL>L, (13

L(10,9)= %[M(l,l)-f— M(1,0)+Nj5(10,1)]

1
=5[+1+0+1]=+1,

where the layering numbeM,.(10,1) is given by the layer-
ing graph displayed in Fig. 21.

With the help of a plane projection of the p&l0,) the
linking numberL(10,1) is found to be equal t&1 in agree-
ment with theR-template predictiorisee Fig. 22

In order to try to compute linking numbers with orbits of
igher periods, we applied a smoothing to the data. Many
scillations are removed by the filtering process. Neverthe-
less, the linking numbel (10,1) counted on a plane projec-
tion of orbit (10) and (1) extracted from the smoothed

expect to correctly count oriented crossings between a pair

10 w - — L-time series is now found to be equal tdlL (Fig. 23. The
} filtering process therefore does not preserve the topology of
sl YIE S w2 | the original data_ a_r_ld cannot b_e safely use_d. It is then difficult
i - to provide a definitive conclusion concerning the topology of
e i ' H :,,1 the L-induced attractor. However, we may state that, relying
oo6k ) - 1 on the obtained results, the topology of thénduced attrac-

tor is compatible with the topology of the-induced attrac-

04 | ¥y o
R B H
L
neno) : 10 I 01
0.2 : : ‘ ‘
02 0.4 0.6 08 X,B 10 !
FIG. 19. Symbolic plane associated with theénduced attractor. The prun- 01 1 10
ing front is well approximated by the dashed line which is located at
@,=0.8499. The period-5 orbit encoded %0110 is reported on this
plane. FIG. 21. The layering numbeX,,,(10,1) is found to be equal te 1.
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, . The attractors obtained from the stellar radius and from
| the luminosity time series possess the same population of
periodic orbits. Due to the jittery character of the luminosity
time series, the topology of tHeiinduced attractor cannot be
characterized completely safely, though. Nevertheless, our
results show that the topologies of the- and of the
- 1 L-induced attractors are found to be compatible, and in fact it
e - is likely that both attractors are actually equivalent. The stel-
| lar light-curve is the most accurate and often the only ob-
servable quantity. From a practical point of view it is there-
. ‘ ‘ ‘ fore reassuring to the astrophysicist that the luminosity is
0 100000 200000 300000 400000 generic in the sense that it contains the same dynamical in-
Lo formation as the temporal variations of the surface radius or
the surface radial velocity. It can thus safely be used to infer
the physical and mathematical properties of this dynamics.
Finally we note that unfortunately, at the present time,

tor. If we furthermore recall that the populations of periodic the topological characterization is only available for 3D sys-
orbits have been found to be the same forBheand for the tems whose dynamics is very dissipative. Until an extension
L-induced attractors, we may conclude that both attractor higher dimensions can be found our method therefore can-

are, at least, very close and, very likely, equivalent. not be applied to more complicated observational stellar
light-curves, such as R Scuti, which have a fractal dimension

greater than 3’

400000

300000

Lit+1)

200000

100000 -

-

FIG. 22. Plane projection of the p&it0,1) : L(10,1)= %(—9-&- 11)=+1.

IV. CONCLUSION
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