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A strange attractofSA) with symmetry groupg can be mapped down to an image strange attractor SA
without symmetry by a smooth mapping with singularities. The image SA can be lifted to many distinct
structurally stable strange attractors, each equivariant uidel with the same image SA. If the symbolic
dynamics of the image SA requiressymbolso; 05, .. .,05, then|G|s symbols are required for symbolic
dynamics in the covers, and there 8¢ distinct equivariant covers. The covers are distinguished by an index.
The index is an assignment of a group operator to each symboﬁﬂgai. The subgroug{C G generated by
the group operatorg,, in the index determines how many disconnected componég@td%|) each equiva-
riant cover has. The components are labeled by coset representative§/fkbnThe structure of each con-
nected component is determined By A simple algorithm is presented for determining the number and the
period of orbits in an equivariant attractor that cover an orbit of pepigdthe image attractor. Modifications
of these results for structurally unstable covers are summarized by an adjacency diagram.
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[. INTRODUCTION In this work, we show that the inequivalent covers of an
image dynamical system are distinguished among them-
Many physical systems exhibit a symmetry. These includeselves by a set of indices. The indices are the operations of
guantum systems that are invariant under complex conjugahe symmetry group. Each symbol encoding an orbit in the
tion [P (x,t)—P*(x,t)], electromagnetic systems that are image attractor is assigned an indgxoup label. Each dif-
invariant under field revers@E(x,t)— —E(x,t)], and fluid  ferent assignment corresponds to a different covering attrac-
systems that are unchanged under reversals of the velocitgr. All covering attractors possess the same symmetry. We
vector field[u(x,t)— —u(x,t)]. Three of the four most stud- illustrate these ideas by applications to two different symme-
ied three-dimensional systems are truncations of electromadry groups with four group elements acting in three-
netic (Duffing, van der P9l or fluid (Loren? models, and dimensional phase spaces. Extensions to other symmetry

exhibit twofold symmetries. groups, both commutative and noncommutative, and to
When particular variables are monitored, for example, thenigher-dimensional phase spaces, are straightforward.
probability P(x,t)=|¥(x,t)|]?> or the intensity I(x,t) In Sec. Il, we introduce these two groups and discuss their

=E(x,t)-E(x,t), information about the symmetry is lost. If action in R3. In Sec. lll we describe how they are used to
the dynamics is chaotic, then the strange attractor recorflecompose the phase space into symmetry-related domains,
structed from these observables will have a lower symmetrgach identified by a group element. In Sec. IV, we describe
than a strange attractor reconstructed from the most funddhe properties of the dynamical system equations for the
mental variablede.g., ¥(x,t),E(x,t)] [1,2]. For example, cover and image dynamical systems. Cover and image attrac-
the strange attractor constructed from theariable of the tors are characterized by their branched manifolds in Sec. V,
Lorenz dynamical system is a-21 image of strange attrac- and the scheme for indexing the covering attractors is intro-
tors constructed from either théor Y variable[3]. Similar ~ duced in Sec. VI. The spectrum of covering attractors for the
statements hold for strange attractors constructed from varfwo symmetry groups is presented and described in Sec. VII.
ables in the van der Pdtotating plane of either the Duffing We describe structurally unstable covering attractors in Sec.
or van der Pol oscillators, compared with strange attractory!ll. Finally, we conclude with a number of remarks and
constructed from th& or Y variable intrinsic to these two observations.
driven dynamical systenigt].

It is important to understand the spectrum of strange at- Il. GROUPS
tractors, with a given symmetry, that is compatible with an
observed attractor with lower symmetry or no symmetry at At the abstract level there is one group of order two, one
all. It is a surprising result that many different strange attracgroup of order three, and two groups of order four. The
tors, all with the same symmetry, are compatible with angroup of order two has one generaoand obeys the rela-
observed strange attractor with lower symmetry. By “com-tion A=1. The group of order three has one generatand
patible” we mean that the attractors with and without sym-obeys the relatio®\®*=1. One of the two order-four groups
metry are related by a local diffeomorphism with the speci-has one generatak that obeysA*=1. The other order-four
fied symmetry. When the symmetry involves a rotation axisgroup has two generatofsandB, and obeys the three rela-
the different strange attractors, all with the same rotatiorfions A>=B?=1 and AB=BA [5].
symmetry, that cover a particular image attracteithout The group of order two has three different inequivalent
symmetry are distinguished by topological indicgk|. faithful representations in the three-dimensional phase space
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k3. The generators have matrix representations

0z Rz( ) P
1 0 O -1 O 0 -1 0 0
01 O 0O -1 O 0O -1 O
0 0 -1 0 0 +1 0 0 -1

These generators describe the group of reflections iXike
planeZ=0 (o), rotations throughm radians about th&
axis[Rz(m)], and spatial inversionsH). The operatoir,
leaves invariant th&-Y planeZ=0. As a result, any double

cover with o symmetry must be disconnected, with one

component in the upper half spage-0 and the mirror im-
age in the lower half spacg<0. By contrast, the invariant
set of Rz(7) is one dimensional4 axis) and that ofP is

zero dimensionalthe origin. These lower-dimensional in-
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Since the two groups are Abelian, the group multiplica-
tion properties are summarized by their character tatdgs

¢ 1 ¢, ci cd Basis vectors
rr i1 1 1 1 1Z,X2+Y2 X*—6X2Y24 Y4,
4X3Y —4XY®
rz1 i -1 -i X+iY,(X—iY)3
ri1 -1 1 -1 X2—YZ2 XY
r« 1 —-i -1 i X—=iY,(X+iY)3
Vo 1 Ry Ry Ry Basis vectors
11 1 1 1 1X2,Y2,72 XYZ
rri1 1 -1 -1 X,YZ
rk 1 -1 1 -1 Y,ZX
r 1 -1 -1 1 Z,XY

variant sets do not provide any obstructions to connected

covers withRz(7) symmetry orP symmetry[1].

For the two cases, the basis vectors for the irreducible rep-

The unique order-three group has a single faithful reprefesentations are listed. In particuléa) the basis vectors for

sentation inR3. The generatorA describes a rotation by
2/3 radians about thg axis.

The cyclic order-four groupA (A*=1) has two faithful
representations i3, C, andS,, whose generators are given
by

0
C,=| 1 ;
0 01
0O 1 O
S=07Cy4= -1 0 0
0 0 -1

The generatoC, describes rotations by724 radians about

theZ axis ancbf{z}l. The generatos, describes rotations by
2/4 radians about th& axis, followed by reflection in the

Z=0 pIane:Sj=ﬂ. We treat below only the first of these two
representations.

For the other abstract four-element groug (Vier
gruppe, the three group operatios B, AB, represent ro-
tations by radians about th&, Y, andZ axes. The matrix
representations of these operators are

the identity representatioi(*) are the fundamental invariant
polynomials;(b) the basis vectors for the other representa-
tions are the appropriate variables for the equivariant dy-
namical system equations.

[ll. SPATIAL DOMAINS

The three-dimensional phase sp&c¥X,Y,Z), in which
the equivariant dynamics occurs, can be partitioned |igto
symmetry-related domains. Each domain is mapped onto an-
other by one of the symmetry group operations. It is possible
to identify one domainthe fundamental domajrwith the
identity group operation. Then each of the other domains can
be labeled by a different group operation. Each of |tfe
symmetry-related domains iR3(X,Y,Z) is mapped in a
one-to-one way onto the phase sp&é€u; ,u,,us) that sup-
ports the image dynamics.

The groupC, is distinguished by its rotatiof) axis. It is
useful to choose the fundamental domain as the union of the
two octants (++)U(++—), where, for example,
(++—) means the set of points>0,Y>0,2<0. The re-
maining three domains are obtained from this domain by the
action of the three remaining group operatitmﬁcﬁ,cﬁ on
the fundamental domain:

A=Ry(m) B=Ry(m) AB=R,() Domain label Domain
+1 0 017-1 0 0][-1 0 o0 ! (FHH)UE+-)
0 -1 0 0 +1 0 0 -1 C4—Rz(7—27) (=++H)U(=+-)
The invariant set is the union of the three rotation axes. This 3 3m _ __
: . C3:=R,|— (+=H)U(+--)
does not provide an obstruction to the connectedness of the 47 2

covering attractor. As a result, fourfold covers of an image

attractor may have a single component, two distinct

The groupV, is distinguished by three mutually perpen-

symmetry-related covers, or four disjoint covers, each idendicular rotation axes. These are equivalent under the group
tical to the image attractor. Four-group action of this type ha¥’; generated by rotations about tfig1,1) axis through 2r/3

been observed in a fluid modi].

radians. As a result, the decomposition into domains must
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show an appropriate symmetry among the domains labeled (a) (b)
by the three rotations. For these reasons, we choose as the Cq Vs
fundamental domain the noncontiguous unioh « +)U C I I Rx
(= ——). The domain decomposition fai, is
Domain label Domain
I (+++)U(=—-) c? 3
R Ry
Rx() (+=—)U(=++) ‘ ‘
Ry(m) (—+-)U(+—+) FIG. 1. Adjacency diagrams for the four domainsiit(X,Y,Z)
Rz( ) (——H)U(++-) under the grouga) C, and(b) V,.

For later purposes, when we discuss structurally unstable
covers, it is useful to know which domains are adjacent. Twc basis set for a faithfylj| X |G| representation of the group.
domains are adjacent when they share a two-dimensiondihis is just the regular representatis] described as
surfacele.g., (++ +) is adjacent to ¢ + +)]. This infor-
mation can be summarized by an adjacency diagram. In such 9.0i= gjrﬁeg (9,),
a diagram, each domain is represented by a small circle that
is labeled by a group operation. Adjacency between two dowhere
mains is indicated by connecting the circles representating
the domains. The adjacency diagramsdgrand), are pre-
sented in Fig. 1.

Individual group operations act to permute the domains
among themselves in a way unique to each group operatiofror V,, the 4<4 matrix representatives of the four group
As a result, the domaingheir group labelsserve to provide operations are

gj # 9.9i

0
ke (g,)=. if
i (927 9;=0.9i -

I Ry Ry R,
;1 1000 0100 0 010 0 00 1
R, |0 1 0 0 10 0 0 0 001 0 010
Ry |0 0 1 0 0 0 0 1 1000 01 00
Rz 1o 0o o0 1 0 010 0100 10 00

IV. EQUIVARIANT AND INVARIANT EQUATIONS X aX+pB.YZ
d
. - . . — = +
The equations describing a dynamical system with sym- dt Y aYtBaZX|. (1)
metry groupG must be unchangetequivariant under the z agl+ B3XY

operations ofg. To this end, not all of the basic variables - .
. . . . The coefficientse;, B; are generally functions of the four
X,Y,Z can be basis vectors for the identity representation ; S o2 0,
r(g). Invariant polynomllal§(I d\f(-f Z4, X;](-Z A o
For the groupC,, Z transforms under the identity repre- ForV, a 1 local difieomorphism that maps each o

- . 3 3 . .
sentation, but the linear combinatioxs+iY do not. The L@etaoeu:rggg;g:gfalt?sn(x’Y’Z) onto R*(uy, Uz, Us) is given
equivariant equations have the ford(X=iY)/dt=(X
*iY)f. +(XFiY)3f,., dZ/dt=f,, where the functions

f f f d . . 2 2 4 U, = l(XZ_YZ)
1+, fo+, T, depend only on the invariant§“+Y<, X 172 '
—6X%Y2+ Y4, 4X3Y—4XY3. These equations, and the im-
age equations without symmetry, have previously been de- Up,= 3 (X2+Y2-272),
scribed[1,3].
For the groupV, none of the three variable§ Y,Z trans- us=XYZ (2

forms under the identity representation. The most general
three-dimensional system equivariant untfgrhas the form  The image(or reduced dynamical equations are
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Uz
d du; dX]

at| 2|~ ox, ar

Uz
X =Y 0 J[aX+B.,YZ
=| X Y  =2Z|| axY+BZX|. ()
YZ ZX XYl azZ+ B3XY

The Jacobian is noninvertible on the singular set

q du;
e L?_X]

=2(X?Y2+Y?Z?+7%2X?)=0. (4)

FIG. 2. Smale horseshoe branched manifold.
This set is the union of the three rotation axes: Xh¢&, and

Z axes. the study of how covering dynamical systems can be con-
The image equations are obtained by multiplying out thestructed from dynamical systems without symmetry.
matrices or the right hand side of E@), for example, In R3(X,Y,Z), the singular set of the groufy, is the Z

axis, while that of), is the union of theX, Y, andZ axes.
The image of the singular set 6f in R3(u;,u,,us) is the
uz=Z axis. The image of the singular set Bf consists of
three half-lines in thei;=0 plane. These half-lines are
However, the equivariant variables must be expressed in

terms of the new invariant variables ,u,,u;. This is gen- 1

erally not possible until a fourth invariant is introduced: X axis, u;=u,==X?=0, uz=0,
=1(X2+Y?+Z?). The three invariant?,Y?,Z? are lin- 2

early related tai;,u,,r4:

du; ) 5
ar - X Y +(B1=BIXYZ (5

1
. X2 . 3 1 2|[u Y axis, —u=u;=5Y*>0, uz=0,
> Y? =5 -3 1 2||uyl. (6)

z? 0 -2 2]lr, Z axis, U,=-Z?<0, u;=u3z=0.

The equation of motion fou, is As long as the image attractor does not intersect the image of

du 1 the singular set iR3(u;,u,,us), its lift under the inverse of
d_tl =(ayt+ay)u;+ §(a1— az)Us+ (81— B2) U3 the transformationt3) is structurally stable. This means that
there is no change either in the number of periodic orbits or

2 in their topological organization under a perturbation of the
+ §(a1— as)ly. (7)  rotation axes.
The invariant polynomialX?, Y2, Z2, XY Z satisfy a sixth- V. DESCRIPTION OF STRANGE ATTRACTORS

degree equatioffsyzyoy") Strange attractors ii® can be described and classified by
(X?)(Y?)(Z?) — (XY 2)?=0. (8)  their branched manifold§4]. The branched manifold that
describes a common chaos-generating mechanism, the
As a result, the radical, (second degree i,Y,Z) satisfies  stretch-and-fold mechanism that creates a Smale horseshoe,

a cubic equation, which is is shown in Fig. 2. This mechanism is frequently encoun-
tered in physical systems. In particular, thesBler dynami-
2[(Up+14)%—9u](r,—uy)=27u3. (9)  cal system exhibits this mechanism for some parameter val-
ues.
This means that the most general equations foruhbave This particular branched manifold has two branches, la-
the form beled 0 and 1, and one branch line. The branch line is parti-
2 tioned into two subintervals labeled 0 and 1. Initial condi-
ﬂ: S £ (Uy U, U (10 tions on segment 0 of the branch line flow through branch 0
dt  &p T2 back to the full branch line; similarly for initial conditions on

the interval 1. The flow properties are summarized by a tran-
The fact that invariant images of equivariant equations gensition matrixT;; , wherei indexes intervals of the branch line
erally depend on radical functiorie.g.,r,) which are solu- that act as initial conditions for the flow through branch
tions of nontrivial polynomial equations has greatly impededrFor the branched manifold shown in Fig. 2,
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Y, the fundamental domain. We give one example eacltCfor
7 andV, invariant fourfold covers.
1 ExampleC,. Assume that points in Q) flow back to the
branch labeledl, while points in 1({) flow to the next
0 branch, labeledC,. Branchl is mapped to the remaining
1 three branches by the three group operat'rﬁmscﬁ, Ci. As
%0 1 a result,
X
1 0
e 0(C4)—C,4, 1(C,—C2,
G 0
1 0(CH—CE,  LChH—CE,
c
(a)Cs 3 3 3 4_
0(C,)—C,, 1(Cy—C,=1
Y
Ry I The transition matrix for this cover is
________ S "%él
— X I C, i (oH
— T oy 0 1 0 1 0 1 0 1
R,
R X I ol1 1 0o o0 0 0 0 0
1 0 0 1 1 0 0 0 0
(b)Vs
Cy 0 0 0 1 1 0 0 0 0
FIG. 3. Possible arrangement of the branch lines in two different 1 0 0 0 0 1 1 0 0
fourfold covers of the Smale horseshoe branched manifald’,, Cc? 0 0 0 0 0 1 1 0 0
(b) V4. In (b), dashed lines indicate that the branch line is below the 1 0 0 0 0 0 0 1 1
Z=0 plane. The width increases with distance from this plane. CZ 0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0
01 (12)
0 |11
T= . (11 )
1111 ExampleV,. In this example, we assume )& Ry and

1(I)—Ry. The full flow information is obtained by moving
the branch line in the fundamental domain to the other three

Fourfold covers of branched manifolds with branch branch lines using the other three group operations:

lines andn branches haveltbranch lines and @ branches.
The 4b branch lines and @ branches are mapped into each
other by the operations of the symmetry group. In Fi@g) 3 0(D—Ry, 1(—Ry,

we show how the four branch lines of a fourfold cover of the

Smale horseshoe manifold may be organized in a structurally

stable fourfold cover. One branch line is completely con- Ry :0(R)—RyRx=I, 1(Ry)—RyRy=R,,

tained in the fundamental domaiir=(+++)U(++—).

The other three branch lines are completely contained in the

other three domains, and can be labeled by an appropriate Ry:0(Ry)—RyRy=R,, 1(Ry)—RyRy=I,

group operation. In Fig. ®) we show a possible arrange-

ment of the branch lines in a fourfold cover with symme-

try of the Smale horseshoe branched manifold when one R,:0(Ry;)—R,Rx=Ry, 1(R;)—R,Ry=Ry.

branch line occurs in the positive octant ¢- +) of the fun-

damental domaiti=(+ ++)U(———).

The transition matrices describing the flow in the fourfold The transition matrix is easily constructed using this infor-
covering branched manifold arex88 matrices. These matri- mation. It is transparent when expressed in terms of the
ces are completely determined from a limited amount of in-‘dressed symbols.” These are the symbols required to de-
formation. Specifically, we must specify the destinatipe.,  scribe the dynamics in the image attractor dressed with the
branch of flows whose sources are in the branch intervals inoperations in the groug:
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o; 0 1
Sa I Ry Ry R; I Ry Ry R;
I 0 1 0 0 0 1 0 0
0 Ry 1 0 0 0 1 0 0 0
Ry 0 0 0 1 0 0 0 1 | 0 1
R, 0 0 1 0 0 0 1 0 —0 I'R€ (Ry) %€ (Ry)
1 I (Ry) IR (Ry)
I 0 0 1 0 0 0 1 0
1 Ry 0 0 0 1 0 0 0 1
Ry 1 0 0 0 1 0 0 0
Rz 0 1 0 0 0 1 0 0

(13

It is clear from this that the entire transition matrix can belabel in this sequence is equal to the last. A second, distinct
constructed from the diagonal blocks. The 16 distinct transibut symmetry related lift of 101 is
tion matrices for the equivariant covers of the Smale horse-
shoe are 1c,c30cc2,crlc2,cylce,nOunlacy - (15D

| 0 1 Thus, 101 is covered by two period-6 orbits in the fourfold
_ Reg Reg cover defined by the transition matrik2). By similar argue-
708018 =0 FReg (&) FReg (&) ments, 1011 lifts to a single period-16 orbit in this fourfold
1| r (gﬂ) r (gﬂ) cover.
Example 2.The orbit 101 lifts to two period-6 orbits in

with 1<a,B<4. These results are easily extended wherfh€ fourfold cover, with, symmetry defined by the transi-
more symbols are required, to other groups and to coverdon matrix(13). By using the arguments of Example 1, we
where the image attractor has more than one brancidipe compute

In Fig. 4 we show three projections of a cover of the
Rossler attractor that hag, symmetry. This cover is struc-
turally stable and is defined by the index:d, 1—Ry. This
cover has two components. Only the component with branch

(14

11r)OR, .RHLR, RYLR,.R)OR, .RYLR, . (168

1R, 000rY IR RNLR, . RYOR . HI(IR) -

lines in domainRy andR; is shown. (16b)
Remark.The matrix elements that occur in the computa-
V1. LIFTS OF PERIODIC ORBITS tions above occur in faithful representations of specific group

operations. For example, in thg, symmetric cover with

Periodic orbits embedded in an image strange attractor liffransition matrix(13), the symbols 0,1 are represented by
to periodic orbits in its covering strange attractors. An orbit4x 4 matrices

of period p in the horseshoe attractor lifts to an orbit of

periodp, 2p, or 4p in any fourfold cover. We illustrate with I'ro 1.0 0 I'ro 010

a few e><<':1|m|0|e$H ) i 6 o 0 Rq 1 0 0 0 Rq 0 0 0 1
Example 1.The orbit 101 lifts to two period-6 orbits in — , 1—

the fourfold cover withC, symmetry described by the tran- Ry0 001 Ry1 0 00

sition matrix (12). To show this, we repeat the symbol se- RO 0 1 O RO 1 0 O

guence 101 several times, and dress each symbol with two (17)

labels. The first label identifies the source branch, the seco
identifies the sinKe.g., Qi1), Occ, ¢, la.c, . €tc). Begin-
ning on the branch, we find

nf'hese matrices are faithful representations for the action of
Ry (for 0) andRy (for 1) on the four domains i3(X,Y,Z).

As a result, information about the periodicity of orbits cov-
ering a periodp orbit can be reduced to a product of group
operations, as follows:

2

Lu.cpOcc, cplic,.cdlic? c3)0cci chlicty . (159

The second label of symbolmust be the same as the first C, 1 C, C, 1 C,
label of the next symbdl+ 1. As a result, dressed symbolic o 101—>C c, C2 3 3 |
L . . T 4 4 4 4 4
dynamics is equivalent to matrix multiplication by the sub-
matrices on the diagonal blocks of the transition matricesn the top line we replace each symbol by its group ldbél
expressed in terms of the dressed symbols. The lift of 101158]. Below this we provide the cumulative product. The
closes after X3=6 periods(symbols, when the first group computations become simpler if we assign a group value to
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35

FIG. 5. Period-3 orbits embedded within theRker attractor.

p orbits. In the second case, a perijpdarbit lifts to two
period-2p orbits. For example, 1642 RyRyRy=Ry, so 101
lifts to a pair of period-6 orbits.

RemarkThe symbol sequence in the ortilt5h) is closely
related to the symbol sequence in ortdi6a; similarly for
orbits (16b) and (16a. The general relation is as follows.
Assign to any symbol sequence in the image its appropriate
group operatiory; as described above. This group operation
generates a subgrouf=g; g,2 ...,I. One orbit in the
cover is obtained by starting in the fundamental domain and
assigning group labels to tiesymbols of the image orbit:
1J,C4OC4'C4104YC§. If gilﬂ the nextp symbols are obtained

by multiplying each of the group operations gy from the
left. If gizaéﬂ, the nextp symbols are obtained by multiplying
by giz, etc. The symbolic names of symmetry-related orbits
are obtained as follows. The subgroip partitions G into
cosets. Forg;=C? the two cosets of’, are {I,C3} and
{C,,C3}. The first orbit(15g starting in the fundamental
domain corresponds to choosih@s a coset representative.
For the second orbit we choose a representative from the
second coset: eith&, or C3. If we chooseC,, we multiply
all group operations in the first orbit b§, on the left to
obtain the symmetric orbit. This maps orkitsg to (15b). If
we choose the other group opera@ﬁ as the coset represen-
tative, this corresponds to starting the symbol sequence at the
second triple[fourth symbol in orbit(15b)]. For the orbits
the basic symbol sequence: 10C,IC,=C3. Then (101§  (16), g;=Ry and the cosets arg,Ry} and{Ry,Rz}. The
=1. For the symbol sequence 1011, we have 101Xoset representatives chosen hfer orbit (168 andRy for
—>C4WC4C4=C3, so (1011} is closed in the cover. orbit (16b). ChoosingR; instead ofRy as the second coset
In the general case, covers of orbits of peripdn an  representative initiates orhbil6b) at the fourth symbol.
image attractor are obtained by writing out the symbol se- In Fig. 5 we show the period-3 saddle 101 and its partner
quence. Each symbol is replaced by an appropriate groupode 100 in the Rssler attractor. They are lifted to covering
operation, given by the index of the cover. The prodyds  orbits in the cover withY, symmetry and indices-8 Ry,
computed, and the smallest positive integawvith the prop- 1—R,. Figure &a) shows the two period-6 covers of the
erty thatgk=1 is determined. There af€|/k covering orbits node (100) in the covering attractor. Since 180R;RyRy
of periodkp in the covering attractor of the original orbit of =Rz, evolution during three periods maps a point on this

FIG. 4. Cover of the Rssler attractor with), symmetry. The
index is{0—1,1—Ry}. Two disconnected covers exist. The one
shown here connects branch lines labeigdand R, . Its partner
connects the branches labeledndRy .

periodp in the image attractor. orbit in domainl to its image undeR; in domainR;, (solid
For lifts with V, symmetry, the group operation assignedline). SinceR3=1, this cover orbit has period 6. The partner
to any symbol sequence in the image is either Ry, Ry, period-6 orbit is shown dashed. It is obtained from the solid

or R,. In the first, case a periog-orbit lifts to four period-  curve by operation&y or Ry. In Fig. 6b) we show lifts of
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FIG. 6. V,-fold cover with in-
dexes 0O-Ry,1—-R, of the
3 period-3 orbits shown in Fig. 5.
] Covers of(a) (100, (b) (101). In
3 both cases the covers consist of
two symmetry-related period-6 or-
3 bits.

the saddle partner 101. For this orbit, 30R;RyR;=Ry. VIl. SPECTRUM OF COVERS

By a similar reason, there are two period-6 orbits covering An equivariant cover of a strange attractor is defined by
101. One mapkto Ry after three periodésolid). The dashed the group label assigned to each symbol and is used to label
curve is obtained by rotating the solid curve By or R;. orbits in the image attractor. For a strange attractor classified
We remark that the covering attractor is structurally stableéoy a branched manifold with two branches, there [

and consists of one component, but covers of any orbit oftructurally stable covers withg|-fold symmetry. For the
periodp in the Rasler attractor consist either of four orbits symmetry grout,, these 16 distinaf,-invariant covers are

of periodp or two of period 2 (not one of period §). organized as follows:
Symbol Group labels
Cc, 0 I I ¢z c;|1l ¢, 1 ¢3cC,cC;C,ChChC,CyCo
1 I c: 1 cilc, 1 ¢ 1 c2c,cCycC,CyCcCyCy
Four components Two components Connected covers

The fourfold cover with index (0,5 (I,I) consists of four disconnected pieces. The cover with index é@(l)Cﬁ)
consists of two disconnected pieces. Two branch lihesdC2, are in one component while the other tv@y, andC3, lie in
the other component. The cover with index (6;4)C2,1) is dual to that with index|(C3). Duality is defined by exchanging
the sinks for the two sources. The fourfold cover with index (g?g:i,cﬁ) also consists of two components. It is self-dual.
The remaining 12 covers are connected. For each there is a path in the attractor from any branch line to any other branch line.
These 12 are divided into five dual pair@X,CL)H(Cj ,Ci4), i#]j, i,j both not even, and two self-dual coveSL(CL), i
=1,3.
The 16 fourfold covers of the Smale horseshoe branched manifoldWyidymmetry are partitioned as follows:

Symbol Index
Vy 0 I I T T Ry Ry R, Ry Ry R;|Rx Ry R, Rx R; Ry
1 I Ry Ry R, T I I Rx Ry R;|Ry R; Rx R; Ry Ry
Four components Two components Connected covers

The cover (0,1} (I,I) consists of four disconnected are three dual pairs, such aBy,Ry)«—(Ry,Rx). In addi-
components. The next nine consist of two disconnected contion, the first three Ry,Ry), (Ry,Ry), (R;,Ryx) are
ponents. There are three dual pairRk)« (Rx,l), etc., mapped into each other undgy, as are the last three in this
and three self-dual covers, e.gR\(,Rx). For example, the |ist. If we regard the symmetry-related attractéusderCs)
cover with index (0,1} (I,Rz) has one component contain- as essentially equivalent, the breakdown of distinct

ing branch lined andR;, while the symmetry-related com- ) _invariant covers of Smale horseshoe dynamics is
ponent(under eithelRy or Ry) contains branch lineRy and

Ry . Similarly for the self-dual cover, (0,5 (R,,R,). The

three covers with indiceslRy), (I,Ry), (I,R,) are related No. of No. of No. of
to each other by rotations about the (1,1,1) axis ky@ Components dual pairs self-dual pairs
radians, i.e., by the groug;.
) . . . 4 0 1(@,10)
The remaining six covers consist of a single connected 1 (R 1(R. R
component. There is a path in each of these branched mani- (LRx) (Rx,Rx)
folds from any branch line to any other branch line. There 1 1 (Rx.Ry) 0
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In summary, there are sik=2X(0+1+1)+1X(1+1
+0)] topologically distinct types of fourfold covers of the
basic Smale horseshoe branched manifold Witlsymmetry.

For covers with four components, lifts of perigpderbits
consist of four disjoint periogh orbits, one in each compo-
nent. For covers with two components, lifts of peripdr-
bits can be of periog or 2p. For connected covers, lifts can
be of periodp (four of then) or 2p (two of themn), but there
can be no orbits of periodpt This is true because any orbit
of periodp is assigned one of the four symbajor Ry, Ry,

R,. In the first casd“=1, k=1, so the cover has periqu

In the second cadéf(=ﬂ (similarly for Ry, Ry), sok=2 and
the two covers have periodp2 This is illustrated in Fig. 6.
This clarifies the mystery reported in R¢¥.] that covering
orbits of period 4 are not observed in a connected structur-
ally stable strange attractor with, symmetry.

Observation.In any of the equivariant covers described
above, the branch lines that can be reached from the branch
line in the fundamental domain are exactly those labeled by
group elements that can be obtained by multiplying the sym-
bol indices in all possible orders. To put this another way, the
symbol indices are generators of a subgrdd@ G. One
component of the equivariant cover contains exactly the
branch lines labeled by the elements of the subgréup
There are|G|/|H| components in the equivariant cover.
These components can be labeled by the coset representa-
tives of G/'H.

VIIl. STRUCTURALLY UNSTABLE COVERS

When the image of the singular set it¥(uy,u,,uz) in-
tersects the image attractor, the singular set intersects the
equivariant covering attractor iR3(X). The intersection has
absolutely no effect on the image attractor but a profound
effect on the covering attractor. To be precise, the covering
attractor is structurally unstable. A perturbation of the loca-
tion of the intersection changes the periodicity, structure, and
organization of many unstable periodic orbits in the cover. } )
The bifurcation due to this structural instability has been FIG. 7. Structurally unstable cover of the $&ter attractor with
named the peeling bifurcatidrd]. V, symmetry. The index is (0,5 (I,Ry+Ry).

In the structurally unstable case, the flow from one of the
intervals of the branch line in the fundamental domain iSya¢, from branch linel to every other branch line. As a
split into components that flow to two different branch lines eqit, the structurally unstable attractor is now connected. It
in adjacent domains. As an example, we consider a cover Q§ |apeled by the index (0,4} (I,R,+Ry). After the u,
the Smale horseshoe branched manifold Withsymmetry  <q axis passes through branch 0 to the space between the
and index (0,1)-(1,Ry). This cover has two disconnected two branches, the cover becomes once again structurally
components. Now we displace the image attractor so thajtable, has index (0,1)}(R;,Ry), and is connected. The
branch 0 intersects the image of tHeaxis u;=uz=0, U, intersection of the half axis;=u;=0, u,<0 with branch 0
=<0. Then the flow from OF) is split between the branch line causes a global symmetry-restoring bifurcation. In this case
in the fundamental domain and the dom#&p. There is a the bifurcation is summarized by

Index (0—I,1—Ry) (0—I+R;,1—-Ry) (0—Rz,1—Ry)
structurally stable structurally unstable structurally stable (19
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Remark.In structurally unstable cases the flow is split connected components in the equivariant covegjig /. If
between branch lines in adjacent domaiRig. 1). The con-  there is more than one component, they are labeled by coset
nectivity of the structurally unstable cover is determined byrepresentatives ig/#. The set of branch lines in the con-
computing the subgroufl, now using all appropriate group nected component containing the branch line in the funda-
labels. For example}t for (0,1)—(I,Ry) is generated by  mental domain are labeled by the group elements/ofrhe
andRy and is the two-element grouig={I,Ry}, whereas in  structure of the remaining|/|H|— 1 components are deter-
the structurally unstable case (0;2YI,Ry+Rz), H is gen-  mined by multiplyingH by the coset representatives.
erated byl, Rz, Ry and consists of all four group operations:  Covers of orbits of periog in the image attractor are
H={I,Rx,Ry,Rz}=G. In this case|G|/|H|=1 shows that obtained by writing out the symbol sequent=g., 10}
the cover has one connected component. A connected strugach symbol is replaced by its indeke.g., (101)
turally unstable cover with indexlRy+Rz) is shown in - R/R,R, when the index is (0,1:(Ry,Ry)] and the

Fig. 7. product is taken to determine a group operatipa G. This
single group operator generates a subgrgpH of orderk
IX. REMARKS, SUMMARY, AND CONCLUSIONS defined by the relatiog‘=1. An image orbit of periog lifts

Strange attractors with no symmetry can be lifted tot0 | /K| orbits of periodp|K] in each of theG/H] discon-

strange attractors with symmetry grogp Many distinct in- nected components of tf&equwarlant covering attractor.

equivalent strange attractors, all with the same image, can b§n i:iasrly’eg:ﬁ;:r;gguri(?fet?t?eggé@ :ilszif}amn?fg\llgl;li?]en;f
equivariant under the symmetry grogp P brop q 9

If s symbols suffice to uniquely describe all the unstabletractors. We have indicated these differences by using two

eriodic orbits in the image attractdg|s symbols are re- groups of order four as examples. One has one generator, the
Pe mage attra y L other has two generators. Many group results are immediate:
quired to label the periodic ort;lés in any of tleeequivariant for example, ifG has two generators bst=2, no connected
covering strange attractors. Thgls symbols are labeled by ' DU o
two indices: one is one of thesymbols necessary for sym- J[svt\lrgctg;aell);ts(;t;asbtll;ﬁe ﬁglur?g?msg?r:;segﬁ F;%S;'b;iﬁ?gfsan
bolic dynamics in the image, the other is one of fiiegroup 9 ' P

operations in the symmetry growp There ardd|® distinct equivariant attractor contains at least two distinct discon-

. oo . nected orbits that cover an image orbit. If the invariant set of
covering strange attractors that are equivariant ugdeith . : A )
. G has too large a dimensige.g.,o7 in R°), index assign-
the same image attractor.

. L L . . . ment is restricted and connected covering attractors are not
Symbolic dynamics in equivariant covers is easily carried

out. Each symbol from the image picks up two labels: Oneoosgib!e. - . -

- . - Distinct covers exhibit dualities and may exhibit geomet-

indicates the source domain for the flow, the other indicates. . .

the target domain. Examples includel@) and 1Ry,Ry) ric equwalencc_a. Structurally unstgble covers mv_olve group
' N labels from adjacent spatial domains. Adjacency information

If the targets for sources in the fundamental domain are < mmarized in an “adjacency diagrarfeig. 1),

k”OW”' targets for sources in the remaining domaln_s are _de These results are independent of the dimension of the dy-
termined by the group action. In fact, group operation pairs__ . )
. . . namical system, even though all results have been illustrated

are matrix elements for faithful permutati¢or regulay rep- : . .
. ' . . on three-dimensional dynamical systems. The results depend
resentations of the group action on the spatial domains, ; A :
; " . .on the symbolic dynamics in the image attractor and the
These matrices are used to construct the transition matrix for

each distinct cover. They therefore can be used to identifigsgt%fegfiﬁtifggg ?2? gzagggi\fgthorg%sﬁee rerfcgjllctis
the inequivalent covers. The identification is made by an 9 y

. ) : . . . without modifications for noncommutative groups as well.
index: the index is an assignment of a group operatjgn

e G to each symbobr; in the symbol set for the image at-
tractor,oi—g,,.

Once an index is assigned, the structure and properties of R.G. is supported in part by NSF Grant No. PHY
the equivariant cover are determined. The group operation8987468. A part of this work was done during a stay by C.L.
in the index generate a subgrotfi_G. The number of dis- at Drexel University.
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