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Abstract

We perform a topological analysis of a chaotic behavior in a plasma experiment: a thermionic diode experiment. The
stretching and folding mechanisms are schemed by a three branch template, i.e. a structure more complicated than the
common horseshoe template. Moreover, a discrete model for the first-return map to a Poincaré section has been obtained
from experimental data by using a global modeling technique. The template and the model give strong indications for a low
dimension dynamics underlying the experimental data. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 05.45.—a; 52.35.—¢g
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1. Introduction

When experimental data are investigated, it is an
important task to determine whether the underlying
dynamics can be described by a low-dimensional
model. The most common way to answer this ques-
tion is to compute a dimension of the attractor using
a box-counting algorithm as introduced by Grass-
berger and Proccacia [1]. Nevertheless, although such
a geometric invariant gives a first indication, more
discriminating tools may be used. One of them is the
topological analysis introduced by Mindlin et al. [2]
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which provides a description of the structure of the
flow as a branched manifold, often called a template
or a knot-holder. The topological analysis procedure
depends on identifying the stretching and squeezing
mechanisms that are responsible for a chaotic attrac-
tor and which organize all the unstable periodic orbits
embedded within the attractor in a unique way. The
topological analysis procedure is reviewed in [3].
Most of the experimental dynamics investigated
up-to-now are characterized by a two branch template
associated with a quadratic map. Such a template
is called a horseshoe template. One of them has
been identified in a glow discharge experiment [4].
Nevertheless, very few experimental data have been
associated with template, non-horseshoe, i.e. with
a template having more than two branches. Let us
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mention the cases of an electronic circuit [5], a laser
system [6,7] or a Belousov—Zhabotinskii reaction [8].
When a non-horseshoe template is found, it becomes
more constraining to find a model in agreement with
the experimental data. This results from the fact that
there are, basically, only two possibilities to have a
dynamics corresponding to a two branch template,
one associated with a quadratic map equivalent to the
logistic map and one associated with a Lorenz-like
map. On the contrary, many possibilities exist when a
third branch is added.

The nonlinear dynamics of electric plasmas often
leads to very complex behavior with many degrees
of freedom. Nevertheless, there are situations where
low-dimensional concepts apply and, for instance,
methods of chaos control can be applied [9]. A partic-
ular example is simple plasma diodes, where global
plasma oscillations may establish chaotic states due
to internal memory effects caused by ion transit [10].
In the present work, experimental data from electron
current fluctuations in a strongly driven thermionic
plasma diode are analyzed by techniques borrowed
from the nonlinear dynamical system theory. As a
result, we obtain a discrete map that fits the exper-
imental data very well. Of basic interest is the fact
that the template associated with the phase space flow
is found to be a non-horseshoe one, which has been
observed in very few other experimental systems.

The paper is organized as follows. Section 2 de-
scribes the thermionic diode plasma experiment.
Section 3 is devoted to the topological analysis of the
experimental data and a discrete model is obtained
for the first-return map in Section 4. Section 5 gives
the conclusion.

2. The experiments

Periodic and chaotic oscillations have often been
observed in periodically driven thermionic discharges
[11]. The experiments were conducted by Mausbach
et al. [12] in a cylindrical vacuum vessel (diameter
15 cm) with a filamentary tungsten cathode and an op-
posite anode plate made of stainless steel separated
by a distance Ly = 10cm (Fig. 1). A more-detailed
description of the experiments and the physical mech-
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Fig. 1. Experimental set of the driven thermionic plasma diode.

anisms of the diode dynamics is given in Ref. [12].
The dynamical behavior of the diode depends on the
static anode potential U, to which is superimposed
a sinusoidal driving potential in the range 5-30 V.
The external load Rj is chosen to be 100 2 and the
heating current I, is equal to 4.2 A. In the case stud-
ied here, the argon gas is at a pressure Pp = 4 X
10~! Pa. Although the confinement of charged parti-
cles is fairly low, the discharge is self-sustained due to
small surface-to-volume ratio. The driving force has
an amplitude U~ = 7.6 V.

A time series of the discharge current I4(¢) is dis-
played in Fig. 2. It has been recorded with a transient
digitizer of 12 bit vertical resolution. The length of the
time series is usually 128 K. The sampling is either
done stroboscopically (sampling at fixed phase with
respect to the driver signal) when a first-return map
is investigated (see Section 4) or the sampling rate
was chosen sufficiently high to have roughly 10 data
points per average period (in the present work typi-
cally 1-10 ps).

3. Phase portrait analysis

This section is devoted to a topological analysis of
the phase space flow underlying the time evolution of
the current discharge. Data requirements for a topo-
logical analysis are conveniently expressed in terms
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Fig. 2. Time evolution of the discharge current generated by a thermionic plasma diode.

of “cycles”. Roughly, a “cycle” is a revolution around
the chaotic attractor; most often, it corresponds to a
peak-to-peak oscillation of the recorded time series.
As a matter of experience, a 100 cycles with 100 sam-
ples per cycle are sufficient [3]. When less than 50
samples per cycle are available, the data must be in-
terpolated and/or smoothed in some way. In order to
realize a spectrum-preserving interpolation, a Fourier
method, based on zero padding of the direct Fourier
Transform of the original time series as implemented
in MATLAB, has been used. Thus, from the 10 sam-
ples per cycle, the interpolation procedure has been
applied to have 100 samples per cycle. The data are
then slightly smoothed over a window of one-fifth of
the period.

From the preprocessed time series, a phase space is
built by using derivative coordinates [13]. In order to
do that, three derivative coordinates could be sufficient
because the correlation dimension is slightly greater
than 2 (D, = 2.06) [12]. The differential embedding
is therefore spanned by

dr, d?1
Y() = =2, Z(t)=—=. (1)

X (1) = Iy(o), . i

The derivatives are computed using a sixth degree
interpolated polynomial. These interpolated polyno-
mials are centered at each point by using the six
nearest neighbors. Derivatives are then obtained by
analytically differentiating these polynomials. A plane
projection of the differential embedding is shown in
Fig. 3.

Gilmore conjectured that it should be possible to
propose a template as a schematic view of the phase
portrait when the Lyapunov dimension obeys 2 <
di, < 3, i.e. when a single Lyapunov exponent is pos-
itive [3]. Such a criterion results from the fact that
the topological analysis method provides a carica-
ture for the flow which vanishes all thickness in the
transverse direction. The flow is thus described by a
two-dimensional branched manifold where the two di-
mensions describe the direction of the flow and the
direction of stretching. Since, in the present case, the
Lyapunov dimension has been found to be equal to
2.08 [12], a template should well describe the flow as-
sociated with the time evolution of the discharge cur-
rent.
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Fig. 3. Plane projection of the state portrait reconstructed by using
the derivative coordinates.
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Fig. 4. First-return map to the Poincaré section P. Three monotonic
branches may be identified.

The analysis starts by computing a first-return map
to the Poincaré section

P ={(Xy, Zy) €e R*Y, =0, Z, < 0}. 2)

At first glance, the first-return map (Fig. 4) constitutes
of two monotonic branches separated by a critical
point located at the maximum. Nevertheless, the de-
creasing branch is layered and the topological analysis
revealed that these monotonic branches have to be dis-
tinguished. The first-return map induces, therefore, a
partition of the phase portrait in three regions. A sym-
bol is associated with each branch. Chaotic trajectories
and the periodic orbits constituting their skeleton are
thus encoded over the symbol set {0, 1, T}. The symbol
“0” is associated with the increasing branch. The in-
creasing branches are preserving order and decreasing
branches are reversing order [14]. The phase portrait is
necessarily divided into one preserving order strip and
two reversing order strips. A preserving order strip rep-
resents an even number of half-turns, while a revers-
ing order strip represents an odd number of half-turns.
Consequently, the corresponding template will be
composed of three strips. Periodic orbits may thus be
encoded by symbolic strings. For instance, a period-2
orbit having one intersection with the Poincaré sec-
tion located on the branch “0” and one located in
the branch “1” is designated by the sequence (10). A
period-3 orbit would have three symbols, and so on.

An adequate template must predict topological in-
variants like linking numbers between pairs of periodic
orbits. A periodic orbit is here considered as a knot.
Periodic orbits embedded within the attractor can be
approximated by segments of the chaotic time series
that mimic the behavior of nearby unstable periodic
orbits. A “close return” method [17] is applied to the
Poincaré section to extract them.

The linking numbers are ambient isotopy invariant
defined as follows. Let « and 8 be two knots defining
a link L in R>. Let o denotes the set of crossings of
o with B. Then the linking number reads

1
(@, ) = 53 e (p), 3)

pec

where ¢ is the sign of each crossing p with the usual
convention, i.e.

XX

e=+1 €=—1

The linking number lk(c, 8) of two periodic orbits
« and B is the half of the algebraic sum of all crossings
between « and S (ignoring self-crossings).

From the experimental data, the linking numbers are
counted on plane regular projections of orbit pairs by
using the third coordinate to define the sign of cross-
ings. For instance, orbits (1) and (10) are depicted in
Fig. 5. This example is very simple and the linking
number is found to be equal to —1 since three neg-
ative crossings and one positive crossing are identi-
fied. Nevertheless, we may encounter more ambigu-
ous cases where oriented crossings are not so eas-
ily computed. Difficulties arise when segments of two
different periodic orbits are close to tangency. In this
case, spurious crossings may appear as displayed in
Fig 6. Such spurious crossings may come from the
preprocessing applied to the data since it is known that
Fourier transform as used for oversampling the time
series may imply additional oscillations. Without this
filtering, however, the situation would be worst due to
spurious crossings generated by noise contamination
and the insufficient resolution of the trajectory. Con-
sequently, we choose to remove by hand the spurious
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Fig. 5. Plane projection of a couple of periodic orbits encoded by
(1) and (10), respectively. The associated linking number is equal
to the half-sum of the oriented crossings, i.e. lk(10,1) = —1.

crossings when required. Two cases of removal are
observed. The first is displayed in Fig. 7.

Crossings are considered as spurious if they corre-
spond to high frequency oscillations in the signal, i.e.
frequencies large with respect to the frequency associ-
ated with the pseudo-period. In other terms, crossings
between two strands may be considered as spurious
when the distance between the crossings is smaller. In
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Fig. 6. Plane projection of a couple of periodic orbits en-
coded by (10) and (10110), respectively. The associated linking
number is equal to the half-sum of the oriented crossings, i.e.
1k(10110, 10) = —7. The oriented crossings located in the box
defined by the dashed line are not taken into account. Most of the
time, the number of positive crossings is equal to the number of
negative crossings. These crossings may be induced by the noise
contamination of the experimental data.

(@)

Fig. 7. Examples of spurious crossings which are removed, being
considered as artifacts. In case (a), the relative positions of the
two strands at the beginning and at the end of small interval are
the same and the crossings are not taken into account. Conversely,
case (b) corresponds to a situation where the relative position of
the two strands are different, one negative crossing is therefore
counted and the two close negative crossings are not considered
as spurious since the two strands present a real crossing.

case of Fig. 7a, crossings are not taken into account
since the relative positions of the two strands are the
same. In case of Fig. 7b, the first two negative cross-
ings are not considered as spurious since the relative
positions of two strands is reversed and, consequently,
the second negative crossing is vanished by the posi-
tive crossing under the assumption of isotopy. This re-
moval procedure has been introduced by Lefranc and
Glorieux [15] and later used by Boulant et al. [6,7] for
processing experimental data generated by a laser sys-
tem. The second case of removal correspond to the left
part of the phase portrait where all the cycles are con-
strained in a thin tube. Noise contamination and pre-
processing of the data induce a large number of spuri-
ous crossings. Nevertheless, in this region, the number
of positive crossings is roughly equal to the number
of negative crossings. The locations of these crossings
clearly suggest that they result from “‘stochastic” pro-
cess like noise contamination and not from a determin-
istic component of the dynamics. They are therefore
ignored for computing the linking numbers.
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Table 1

Linking numbers counted on plane projections of periodic orbits.
They are found to be equal to those predicted by the template
defined by the linking matrix (4)

Ik (10) (1011) (10111) (101110)

)] -1 -2 —4 -3
(10) -5 -6 -7
(1011) —13

With this procedure, we find the linking num-
bers reported in Table 1. The linking number
Ik(1011, 101110) is not determined because the plane
projection used does not allow to avoid any tangency
over a long segment between these two periodic or-
bits. In such a case, it is not possible to count safely
the oriented crossings. A template which can predict
all computed linking numbers is described by the
linking matrix

—2 -2 -1
Mi=|-2 -1 —1], )
~1 -1 -1

according to the standard insertion convention [16].
The diagonal elements M;;s are equal to the number
of w-twists of the ith strip and off-diagonal elements
M;; (i # j) are given by the algebraic number of inter-
sections between the ith and jth strips. The template
associated with the linking matrix (4) is displayed in
Fig. 8. Further details for such a topological char-
acterization procedure are extensively discussed in
[2,17].

The template obtained for this experimental data
set is quite interesting because it is definitely differ-
ent from the usual horseshoe map obtained in most of
the cases studied elsewhere. The identification of this
template is important for two reasons. First, when a
layered first-return map is obtained (Fig. 4), we are not
always ensured to be able to describe the dynamics by
a template. Indeed, an attractor associated with a rather
similar map has been obtained in a nine-dimensional
Lorenz model [18] but it was impossible to find a
template although the attractor has been successfully
reproduced by a four-dimensional model obtained by
using a global modeling technique from a scalar time

Fig. 8. Three strips template synthesizing the topological structure
of the phase portrait of the experimental data recorded on the
driven thermionic plasma diode.

series [18]. In the case of the thermionic diode ex-
periment, the existence of the template displayed in
Fig. 8 reveals that, although the underlying dynam-
ics may be of a dimension higher than 3, the flow
rapidly relaxes to a three-dimensional subspace of the
phase space. Second, if a global model is obtained, it
must generate a chaotic attractor characterized by the
same template than the one here extracted from the
data.

4. Map modeling

A thin tube in which all the trajectories are pass-
ing is observed in the phase portrait (Fig. 3). These
segments of trajectories correspond to the long time
interval At on which the current remains almost con-
stant, the result of a relaxation process in the plasma
discharge [19]. As a consequence, a given point in
the reconstructed phase space may have two differ-
ent “futures” and a deterministic model cannot be
expected meaning that flow modeling is hopeless. It
does not imply that it is not possible to find a set of
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ordinary differential equations which captures the dy-
namics underlying the experimental data. Indeed, there
exists some low-dimensional models which generate
attractors presenting some regions of the phase space
where all revolutions are sufficiently confined to be
not distinguishable as soon as the time series are dis-
cretized or contamined by noise. See, for instance, the
six-dimensional model proposed by Lopes and Chian
[21]. This is precisely the case of the thermionic diode
dynamics. In this case, it is not possible to recover the
differential structure from a single scalar time series.
Such a lack of observability has been noted for the
very simple Rossler system when the z-variable is
considered as the physical quantity to measure [20].
Thus, the set of ordinary differential equations which
must exist is not necessarily very complicated but one
of the dynamical variable must remain nearly con-
stant during a significant time interval. Let us insist
that such a feature is quite characteristic of relaxation
processes.

4.1. Map modeling technique

Nevertheless, a map modeling for the first-return
map to the Poincaré section can be attempted. We
consider maps reading as

Xnv1 = G(Xp), ®)

where X, is the state vector at the (n+ 1)th iteration
(n=0,1,...) and G defines the map under consid-
eration. For an m-dimensional state vector, the system
(5) involves m functions G; which are assumed to be
unknown. The aim is thereafter to obtain approxima-
tions Gi to the functions G;s, from a time series made
of consecutive values of one of the variables spanning
the Poincaré section. Let x,, designate this variable.
The problem of approximating functions with a ba-
sis of polynomials starting from a time series has al-
ready been discussed for the case of flow modelings
[22-26]. The approximation is then obtained by using
a least-square method to minimize a quadratic error
function which compares actual values of the function
and approximated values. The functions are approxi-
mated by using multivariate monomial expansions on
nets [26,27]. Similarly, in the case of map modeling,

the functions G;s can be approximated by using poly-
nomials. The approximation G; to G; then reads

Nk
Gi =) KyP/, (©6)
j=1

where the P/ are monomials given by

in the three-dimensional case, with a biunivocal re-
lationship between integers j and triplets (k, [, m) as
defined in Ref. [26]. Nk is the number of monomials
retained in the approximation. Here, x, y and z are
equal to x,, x,+1 and x,47, respectively. Sometimes
rational functions are required to capture stiff varia-
tions observed on maps such as the Lorenz map or the
four branches Rossler map investigated in Ref. [28].

The quality of the model depends on the following
modeling parameters:

e N, the number of centers taken into account to
approximate the model functions G;s;

e Nk, the number of polynomials retained for esti-
mating the model functions.

The models will be validated by using a probabil-
ity density function of visits as introduced in Ref.
[29].
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Fig. 9. First-return map of the stroboscopically sampled current
oscillations.
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4.2. Application to the experimental data

In this section, we are interested in modeling the un-
derlying dynamics that governs an experimental data
set described in terms of a discrete map. Rather than
using a Poincaré section of the reconstructed phase
portrait, we took advantage of the fact that the dynam-
ical behavior is synchronized with a periodic driving
force. The stroboscopically recorded current oscilla-
tions with respect to the driving force frequency allow

Table 2

Estimated coefficients K, for the model function G obtained from
the experimental time series recorded on the driven thermionic
plasma diode. A single set of coefficients K ; is reported because
a single function G is sufficient to capture the dynamics of the
plasma experiment investigated here

Jj k [ Ky
1 0 0 10.546201806079
2 1 0 261.19848372722
3 0 1 —120.50124199277
4 2 0 —3193.6301117133
5 1 1 —2371.2376381203
6 0 2 643.83524189205
7 3 0 12676.456774224
8 2 1 26542.039539416
9 1 2 7463.7108381248
10 0 3 —1832.2376254873
11 4 0 —24587.109662417
12 3 1 —85834.002582640
13 2 2 —81632.619613464
14 1 3 —8764.0445047406
15 0 4 2736.5145406744
16 5 0 25546.115911921
17 4 1 123753.26307503
18 3 2 208991.02531978
19 2 3 111581.16147273
20 1 4 848.55188767912
21 0 5 —1973.4458152169
22 6 0 —13710.573357592
23 5 1 —83564.627967549
24 4 2 —203095.39550316
25 3 3 —212120.25275997
26 2 4 —64030.074970727
27 1 5 4242.3588757914
28 0 6 535.46451876984
29 7 0 2997.3869579818
30 6 1 21596.677621816
31 5 2 67421.841202925
32 4 3 108579.29108430
33 3 4 72382.159576379
34 2 5 11449.201058874
35 1 6 —1722.4053529534

0.8 E
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[n+l \
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n

Fig. 10. First-return map generated by the model obtained from
the experimental data.

one to define a first-return map to a Poincaré section
of the dynamics (Fig. 9).

The best model has been obtained by using a poly-
nomial form for a single model function G with the
modeling parameters (N¢, Nx) = (155, 35). Two co-
ordinates are involved,

Xni2 = G (X, Xni1)- (7)

The model constitutes of 35 monomials with a degree
less than or equal to 7. The model coefficients are
compiled in Table 2. The outcome of the model for
the experimental first-return map is shown in Fig. 10.
Its global shape is very similar to the shape of the ex-
perimental first-return map (Fig. 9). Nevertheless, the
thickness of the model map is less important than for
the experimental map. Such a discrepancy may arise
from the noise contamination of the experimental dy-
namical behavior which is not captured by our deter-
ministic model.

In order to have a better validation than visual in-
spection, a probability density function of visits [29]
is computed. Such an invariant is very efficient for
validating discrete models [28]. In the present case,
the probability density function of visits (Fig. 11) is
very similar for both the model and the experimental
first-return map.
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Fig. 11. Probability density functions of visits computed from the
experimental data and synthetic data generated by the discrete
model.

5. Conclusion

The chaotic attractor generated by a thermionic
diode plasma experiment has been investigated in
terms of a branched manifold schemed by a template.
The dynamics is more complicated than the trivial
horseshoe template. As a consequence, this dynam-
ics may be described by a low-dimensional set of
ordinary differential equations. Unfortunately, a lack
of observability of the dynamics does not allow to
obtain such differential equations by using a global
modeling technique.

Indeed, the inverse modeling of the nonlinear dy-
namics of plasmas is a challenging task. In the present
case, the stroboscopically recorded first-return map to
a Poincaré section is sufficiently simple to be success-
fully modeled. The discrete model developed in the
present paper is useful, for instance, for a deeper theo-
retical analysis of the control of its chaotic dynamics,
as experimentally demonstrated in Ref. [19]. Future

work will be devoted to more complex situations
which may have an immediate application like a more
stable discharge behavior or improved plasma con-
finement owing to reduced chaotic particle transport.
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