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Let us consider the following continuous-time system

= f(z)+g(2)u, z €R" ue R (1)
§= h(z), £ e Rt (2)

where f(z), g(z) and h(x) are sufficiently smooth vector functions.
Linear system i.e. f(x) = Az, g(x) = B and h(z) = Cx, there exists
an observability condition:

The linear system is observable if and only if
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For nonlinear systems, the observability depends on the input, is local
and there are no stopping criteria. Besides, there exist several
definitions of observability as local [5], generic [3] etc. In a very
simplified way, we can refer to the implicit functions theorem and find
out on which order the output function £ must be derived with
respect to time. This leads to the simple test:

dg
deM

where £U) denotes the it derivative of & with respect to time and

do = (£, .., 2>).
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Let us consider the well-known Rossler dynamics [11]:

i‘l = —T2 — I3
fl.:2 = X1+ axg (5)
j33 = b+$3(1‘1 — C)

If we consider £ = 1 as output, then (4) becomes

d¢ 1 0 0
Rank | d¢®™ | = Rank 0 -1 -1
de® —(1+a3) —a —(z1-0)

which has a state singularity in 1 = a + ¢ due to the nonlinearity.
Now, if we consider £ = x5 as output, then (4) becomes

d& 0 1 0
Rank | d¢® = Rank | 1 a 0
d£(2) a 1—a> -1
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Flatness

Since the seminal work of Fliess and co-authors [4], the flatness
concept is used in many applications.

Definition 1:

The dynamic (1) with x € R™ and u € R™", is zero-flat if there
locally exist nyy: = nip, smooth functions h; = h;(x), where

1 <@ < ngye having the following property:

there exist an integer ¢ and smooth functions 7;, 1 <7 < n, and §;,
1 < 7 < nyy,, such that locally

x; = vi(h, h,..., h(q_l)) and u; = ¢;(h, h,..., h(Q)), (6)

The function h = (hy,...,hy,,,, )T is called a flat output.
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Flatness

Example, let us consider again the Rossler dynamic (7) with £ = x4
and add an input that appears linearly in the equation describing the
time derivative of x3. The resulting controlled system reads:

T1 = —T2— T3
By = x1+4ax (7)
i3 = b4uaz(ry—c)+u
§ = o
It holds that 25 =0, % — 0, 22 — (g and %5~ = 1. All the

ou
properties hke observablhty, controllablhty, input-output link hold

without state singularity as it would hold for a linear system. In
[10, 9]... a symbolic algorithm is proposed to check whether a system
is flat or not along with an assessment of the quality of flatness.
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Let us now consider the invariant discrete-time system

o G(z,u), x €R" ueR™ (8)
£= h(z), § R, (9)

where 2T stands for z(k + 1) and x stands for x(k). Moreover, we
consider discrete-time dynamic with nonlinearity in u, because the
composition of functions generally kills the input linearity e.g.

o =22 and 2§ = u give 27T = 2.

Definition 2: The invariant discrete system (8)-(9) is globally
universally causally observable, if Vo € R"™ and Vu € R™» there exists

[ € R* and a function F such that
! :F({,f_,...,f_l,u7u_,...,u_(l_l)) (10)

where o~ stands for e(k — 1) and e~/ stands for e(k — [).
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Definition 3:

The invariant discrete system (8)-(9) is locally universally causally
observable at xg := x(0), if Yu € R™»| there exist V,,, a neighborhood
of xg, l € R* and a function Fy, such that Vz € Vx,

x_l :Fx0(£a§_7'-'7§_17u7u_w”?u_(l_l)) (11)

Proposition:
The pair [G, ] is locally universally observable at z if and only if
there exists [ > 0 such that Vu € R™» the observability matrix

d(h(zo))
d(h o G(xg,u
Op¢i(x0) = .( (o) (12)

d(h o G°Y(zg,u)),

is of rank n where G°2(xg, u) is equal to G(G(zg,u),u"),
G°3(xg,u) = G(G(G(x0,u),u™),u™ ™), and so on.

J-P Barbot et a. Toulouse, France, October 2023



Discrete-time system analysis

@00
Flatness

As a discrete-time counterpart of flatness for continous-time systems
(let us recall [4]), the definition of a zero-flat nonlinear discrete-time
system was given in [7]:
Definition 4:
The nonlinear discrete-time input-output system (8)-(9) is zero-flat if
@ There exists an integer k and a function Fygate, such that, the
state  can be rewritten as a function of the output, that is
T = Fstato(gv £+7 ) ’ngk)
© There exists an integer k and a function Fi,, such that, the

control input can be rewritten as a function of the output that is
u = Fin(fanga ~~'7£+(k+1))'
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The discrete-time nonlinear canonical form given in [8] makes a
connection between controllabilty, observability and flatness [7, 2J:

a:f = zo+ai(z1)
x; = z3+ as(x1,22)
= (13)
x:_l = J?n+an_1(l‘1,$2,...,$n_1)
o = an(1,79, .., T, )

Systems (13) with a,,(z1, za, ..., Tp, u) = a(x1, T2, ..., z,) + bu and x4
as output ¢ are zero-flat. In fact x1 = &, 29 = —ay(€),

3 =& —a1(€7) —aa(&, €T — a1(€)) and so on recursively.
Consequently, from the fact that every x; is function of y,y™, ...y
and that ;7 = a,(z1, ..., x,) + bu, there exists a function

Fin(&,61, ..., €D+ such that u = Fy,(€,€F, ..., D),

i+
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Let us consider the nonlinear discrete-time system:

xf = x1+ x%
vy = w (14)
£ = o
The change of coordinates ¢; = £ and (3 = £ + 23 gives
G = G
G = G+’ (15)
§ = G

This coordinate change is not a global diffeomorphism, the singularity
is at x5 = 0. Thus, even if the system (15) is observable the system
(14) is not observable. Moreover, there is also a commandability in
both system representations (i.e. (14) and (15) where x respectively
(3 can only increase.
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The aim is to propose a graph-based methodology [6, 1] in order to
verify that for a given discrete map (1) with « = 0 (autonomous
system), the controlled system with input u € R™" and measurement
£ € R™n admits £ as a flat output. This approach is restricted to
discrete-time systems that can be written in the controlled form:

+
E:{x = Az + Bu,

& = Crz (16)

where the entries of matrices A € R"*™ and B € R"*™i» may be non
constant but may depend on the output € € {1, 22, ..., 2n}.
Proposition
Consider the structured linear discrete-time system 3 described by
(16). The output denoted by € € {x1, za, ..., z, }, associated to set of
vertices E, is generically a flat output if and only if, in the associated
digraph G(X), the following three conditions hold:

Q (U, E) =nyp.

@ All the maximum U-E linkings have the same length.

@ Every cycle in the digraph G(X) covers at least an element of

Vess(U, E).
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Let us consider the Henon map described by

rf = 1—az]+mz
3 = br (17)
£ = n

where a and b are real numbers. When applying a control input u on
the second component x5, the resulting dynamics can be rewritten

like z+ = Az + Bu + f(£) with
| —a€ 1 10
[ 8)e- 2]

X X, u
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ry = f - Fstate,l(g)
To = §+ -1 + a§2 - state,2(£7€+)
u = §++_1+a€++_b£:Fin(§7£+v’£++)
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