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Recurrence plots were introduced to quantify the recurrence properties of chaotic dynamics. Here-
after, the recurrence quantification analysis was introduced to transform graphical interpretations
into statistical analysis. In this spirit, a new definition for the Shannon entropy was recently intro-
duced in order to have a measure correlated with the largest Lyapunov exponent. Recurrence plots
and this Shannon entropy are thus used for the analysis of the dynamics underlying patient assisted
with a mechanical noninvasive ventilation. The quality of the assistance strongly depends on the
quality of the interactions between the patient and his ventilator which are crucial for tolerance and
acceptability. Recurrence plots provide a global view of these interactions and the Shannon entropy
is shown to be a measure of the rate of asynchronisms as well as the breathing rhythm. © 2007
American Institute of Physics. �DOI: 10.1063/1.2435307�

When spontaneous breathing is no longer sufficient to
maintain alveolar ventilation and subsequent gas ex-
change, noninvasive mechanical ventilation that allows a
reduction in the work of breathing is an effective proce-
dure to relieve the patients with chronic respiratory dis-
eases. One important dynamical feature involved in the
patient discomfort is the lack of synchronization between
the patient’s breathing rhythm and the ventilator cycle.
The dynamics underlying the patient-ventilator interac-
tions is thus investigated using recurrence plots and the
Shannon entropies which can be estimated from them.
The Shannon entropies computed from the airway pres-
sure and from the total duration of the respiratory cycle
provide a classification of the types of patient-ventilator
interactions observed. They could be used to quickly set
the ventilator.

I. INTRODUCTION

Noninvasive mechanical ventilation is an effective pro-
cedure to manage patients with acute or chronic respiratory
failure. Most ventilators act as flow generators that assist
spontaneous respiratory cycles by delivering inspiratory and
expiratory pressures. Alveolar ventilation and subsequent
pulmonary gas exchanges are thus improved. Since the sys-
tem patient-ventilator can be viewed as a nonlinear dynami-

cal system, the application of the nonlinear dynamical sys-
tem theory to the analysis of the respiratory rhythm during
mechanical ventilation can be traced back to the analysis of
different coupling patterns �between a mechanical ventilator
and the respiratory rhythm� in the works by Petrillo and
Glass1,2 where the concept of phase locking was first pro-
posed. Experiments were performed on anesthesized cats
which were paralyzed by neuromuscular blockade and inva-
sively ventilated. The rhythm of central respiratory activity
was monitored by recording inspiratory-promoting activity
from the phrenic nerve that innervates the diaphragm. As the
ventilator volume and frequency varied, a number of differ-
ent rhythms were identified between the ventilator and
phrenic activity.2

Tools borrowed from nonlinear dynamical systems
theory have been widely used in biomedicine, in particular
for investigating cardiac variability, see Refs. 3–6, among
others. Breathing is a phenomenon naturally related to the
cardiac activity as shown by the global model obtained by
Aguirre and co-workers.7 Also in normal subjects, breathing
patterns display a certain variability which is maintained by a
central neural mechanism and the feedback loop of arterial
chemoreceptors and lung vagal sensory receptors.8 Periph-
eral factors, such as mechanical and chemical changes within
the respiratory system, may modify the breathing pattern
variability from the normal level in individuals with patho-
logical conditions. Quantitative methods, including calcula-
tions of coefficients of variations and first-return maps—alsoa�Also at UPRES EA 3830—IFR MP23, Université de Rouen, France.
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called Poincaré maps—have been applied to the analysis of
breathing pattern variability to serve as indicators of patho-
logical conditions in patients with respiratory diseases.9–11

One of the relevant factors for the tolerance of the as-
sisted mechanical ventilation could be related to the patient
comfort. Unfortunately, quantifying ventilatory comfort is
still an open problem since it is based on subjective answers
to questions asked to the patient. Our objective is therefore to
investigate how tools borrowed from the nonlinear dynami-
cal systems theory can improve this subjective
estimation of the patients’ comfort. This will be done by
assuming that two particular factors could play an important
role in the tolerance of mechanical ventilation. They are
asynchronisms—generally, an asynchronism corresponds to
a lack of ventilator triggering by inspiratory effort of the
patient—and the regularity of the breathing rhythm. It will
be shown that both can be related with some recurrence
properties of the dynamics.

In order to investigate these properties the recurrence
plots introduced by Eckmann, Kamphorst, and Ruelle13 will
be used. A recurrence plot Rij is a square array built as fol-
lows. Every point of the phase space trajectory �xi�i=1

N is
tested whether it is close to another point x j of the trajectory,
that is, whether the distance between these two points is less
than a specified threshold �. In this case, the point is said to
be recurrent and is represented by a black dot. Otherwise, the
point is not recurrent and is represented by a white dot. This
can be described as an N�N array

Rij = ��� − �xi − x j�� , �1�

where ��xi� is the Heaviside function.
A few years later, Trulla et al.14 coupled the recurrence

plots with different measures, helpful for transforming
graphical interpretations into statistical analysis. Many inves-
tigations were performed using such analysis.15–22 Among
the different measures used was the Shannon entropy which
was found to be correlated with the inverse of the largest
Lyapunov exponent. Since Shannon entropy characterizes
distributions of statistical variables, it is not a dynamical in-
variant as the Kolmogorov entropy which characterizes prop-
erties of dynamical systems. A Shannon entropy is therefore
not necessarily related to the largest Lyapunov exponent as
the Kolmogorov entropy is according to the Pesin conjecture.
Nevertheless, one of us recently proposed a new definition of
the Shannon entropy, still computed from the recurrence plot,
to obtain an entropy which increases when the chaotic dy-
namics is developed,23 that is, which is related to the largest
Lyapunov exponent.

The subsequent part of this paper is organized as fol-
lows: In Sec. II, it is briefly recalled how to properly com-
pute the Shannon entropy from the recurrence plots. Section
III describes the experimental device used for this study. Sec-
tion IV, which is the main part of this paper, is devoted to the
analysis of the dynamics underlying subject-ventilator sys-
tem. Section V gives a conclusion.

II. RECURRENCE PLOTS AND SHANNON ENTROPY

Before applying recurrence plots to investigate the dy-
namics underlying the subject-ventilator system, it is neces-

sary to discuss the conditions in which such an analysis can
be safely performed. It has been shown that a recurrence plot
analysis is optimal when the trajectory is embedded in a
phase space reconstructed with an appropriate dimension
dE.24 Such a dimension can be well estimated using a false
nearest neighbor technique as introduced by Kennel et al.25

or improved by Cao.26 The dE-dimensional phase space is
thus reconstructed using delay coordinates. The time delay �
can be estimated using mutual information27 or the first zero
of an autocorrelation function,28 but most of the time a visual
inspection works well too. Basically, the time delay has to be
as small as possible and always less than a quarter of the
pseudoperiod. A parameter specific to the recurrence plots is
the threshold �. Many trials lead us to choose �for all the
dynamics investigated� a threshold equal to �dE�10% of the
average magnitude of the measured quantity. The threshold
is therefore automatically computed from the time series in-
vestigated. Thus, only two parameters have to be determined:
the embedding dimension, dE, and the time delay, �. When
not extracted from a Poincaré section, the time series used
for computing recurrence plots and derived measures will be
sampled at �. This appears to be a good balance between
covering each oscillation and the whole attractor.

The Shannon entropy is usually defined as

SRP = − 	
n=1

H

Pn log�Pn� . �2�

In the form introduced by Trulla et al.,14 H is the length of
the maximum recurrent segment, Pn�0 is the relative fre-
quency of the periodic segments with length n�0. As well
noted by Castellini and Romanelli, this “quantity should be
labeled more properly as a first rate cumulant since it is
related to the relative frequency fluctuations.”20 In fact, since
the Shannon entropy quantifies the complexity of the dynam-
ics, it should increase when the chaotic behavior is devel-
oped, that is, for instance, when the bifurcation parameter �
of the logistic map is increased. Moreover, according to the
Pesin conjecture, the Shannon entropy must be correlated
with the largest Lyapunov exponent.12 Unfortunately, this is
the opposite with the above definition.22 Recently, one of us
proposed to replace Pn with the relative frequency of the
occurrence of the diagonal of segments with length n of non-
recurrent points23 and H is the maximum length of the non-
recurrent segments. This definition removes the departure
from the properties commonly presented by the Shannon en-
tropy. In Sec. III, Shannon entropies will be computed from
two different types of time series, namely the maxima of the
airway pressure within a respiratory cycle and the times du-
rations of these cycles. To avoid any confusion, the Shannon
entropy will be designated by SP when computed from the
pressure and by ST when computed from the time duration of
the respiratory cycles.

This is simply justified since a white dot is represented
by a nonrecurrent point which is nothing else than a signa-
ture of the complexity within the data. With this definition,
the quantifier given by Eq. �2� increases as the bifurcation
parameter increases �as shown in the case of the Logistic
map in Fig. 1�. As soon as the largest Lyapunov exponent is
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positive, there is a one-to-one correspondence between the
new definition of the quantifier SRP and the largest Lyapunov
exponent. In particular, when the dynamics is noise free, it is
possible to identify periodic windows �at least the largest
ones� as with the largest Lyapunov exponent �Fig. 1�.

Recurrence plots can also be applied to continuous time
series or to the set of intersections of the phase trajectory
with the Poincaré section. The latter will be designated as a
“discrete” time series. Indeed, we have to verify whether the
dynamics is seen in the same way for both types of time
series. The dependence of the Shannon entropy on a bifurca-
tion parameter is thus computed from continuous time series
solution to the Rössler system

ẋ = − y − z ,

ẏ = x + ay , �3�

ż = b + z�x − c� ,

with b=2, c=4, and 0.3�a�0.432, that is, over an interval
where the bifurcation diagram is equivalent to those of the
Logistic map. Consequently, a curve like those shown in Fig.
1�b� is expected. The Shannon entropy is successively com-
puted from the time evolutions of the three dynamical vari-
ables of the Rössler system. The recurrence plots are com-
puted by using a 3D phase space reconstructed with the
delay coordinates. For each variable, the time delay � is
equal to 1.5 s, that is, a quarter of the pseudoperiod of the
Rössler system with the parameter range chosen. The data set
is made of 1500 points sampled at �. For the three variables,
the Shannon entropy is less sensitive to the dynamical
change �Fig. 2�. For instance, the period-3 window is not so
clearly evidenced as in Fig. 1�b�.

Moreover, there is a decrease of the entropy for a values
greater than 0.425, a tendency not observed for the previous

computations in a Poincaré section �Fig. 1�b��. On the other
hand, the entropies computed from x and y are quite similar
�Figs. 2�a� and 2�b�� but it decreases for a�0.390 when
computed for the z variable �Fig. 1�c��. This means that,
when observed from the z variable, the underlying dynamics
cannot be properly investigated. This dependence on the
choice of the observable has been discussed in detail in Ref.
29. It therefore appears that investigating the dynamics using
recurrence plots computed in a Poincaré section provides a
more valuable characterization than when continuous time
series are used. If possible, an analysis in the Poincaré sec-
tion will be preferred.

III. EXPERIMENTAL DEVICE AND MEASUREMENTS

A. The ventilatory circuit and the ventilator

The interplay between the patient and the ventilator is
complex. Asynchronies may arise at several points during the
respiratory cycle. In order to investigate this interplay, an
experimental device is built as follows �Fig. 3�. Noninvasive
ventilation is delivered to the patient through a well-fitting
full face mask �Mirage NV, RESMED, North Ride, Austra-
lia�. To avoid CO2 rebreathing, an intentional leak is required
in the ventilatory circuit and a Whisper Swivel II exhalation
port �RESPIRONICS, Pittsurgh, PA� is therefore inserted
�Fig. 3�.

To adequately assist spontaneous breathing, a ventilator
�Smartair ST, AIROX, Pau, France� is placed at the other end
of the circuit. The ventilator detects inspiratory effort
through changes in inspiratory flow. At the output of the
ventilator, an antibacterial filter BB2000APS �PALL, Medical
Newquay, UK� for breathing system is inserted to prevent
bacterial contamination of the ventilator. In this study, the
ventilator is used in a pressure support mode without backup
frequency. The inspiratory phase is triggered by a threshold
rate of airflow change, that is, by a variation of the flow
�20=0.0167 l s−1 over 20 ms. The ventilator thus delivers an
inspiratory positive airway pressure �IPAP� which is set to
several values between 10 and 20 mbar in the present proto-

FIG. 1. Comparison between the largest Lyapunov exponent and the Shan-
non entropy for the Logistic function. �a� Largest Lyapunov exponent, �b�
Shannon entropy SRP computed from the recurrence plots. 1000 data points
are here used.

FIG. 2. Shannon entropy computed using recurrence plots from the different
variables of the Rössler system. A 3D phase space is reconstructed using
delay coordinates with a time delay �=1.5 s. 1500 data points sampled at �
are used.
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col. The pressure delivered by the ventilator then increases to
the preset IPAP value during a so-called pressure risetime,
Tpr. The expiratory phase is triggered here when the flow
decreases below 75% of the maximal value of the peak flow.
The pressure delivered by the ventilator then returns to the
end positive airway pressure �EPAP� value which was set to
4 mbar in the present study. Few typical ventilatory cycles
are depicted in Fig. 4.

During routine measurements of breathing pattern, res-
piratory flow �Qv� was measured using a pneumotachograph
Fleisch #2 �METABO, Lausanne, Switzerland� connected to a
pressure transducer TSD 160A �±2.5 cm H2O, BIOPAC SYS-

TEMS, Goletta, CA�. The pneumotachograph was inserted be-
tween the full face mask and the exhalation port. Airway
pressure �Paw� was measured with a differential pressure
transducer DP15 �±5.6 cm H2O, VALIDYNE, Los Angeles,
CA� near the pneumotachograph. All signals were digitalized
at 100 Hz and sampled for analysis using an analogic/
numeric acquisition system �MP150, BIOPAC SYSTEMS, Go-
letta, CA� running with a personal computer with the data
acquisition software Acqknowledge ACK100.

B. Subjects and protocol

Twelve subjects �seven female and five male� with vari-
ous health conditions were studied. All the subjects were in
stable condition, as assessed by clinical examination and ar-
terial blood gases. Among them, four patients had severe
chronic obstructive pulmonary disease �COPD�, four had
obesity hypoventilation syndrome �OHS� and four were
healthy subjects. The clinical characteristics of the 12 sub-
jects are reported in Table I. The four COPD patients were
smokers. The four OHS patients and the four healthy sub-
jects were not. Basically, COPD is characterized by an in-
creased airway resistance due to an inflammatory process in
the bronchial wall and a loss of lung elastic recoil. Destruc-
tion of lung parenchyma causes loss of alveolar septa attach-
ments and small airways obstruction can determine positive
alveolar pressure at the end of expiration phase.30 Therefore,
airflow limitation leads to an intrinsic end positive airway
pressure �EPAPi� and dynamic hyperinflation �i.e., increase
of tele-expiratory volumes during excessive or high-

FIG. 3. Experimental device used for
investigating the interplay between
subject and ventilator. �See text for
details.�

FIG. 4. Typical waveforms for the flow Qv and the airway pressure Paw

during pressure support ventilation. Ventilator parameters: IPAP=16 mbar
and EPAP=4 mbar. The second cycle is associated with an ineffective ef-
fort, that is, there is a small peak flow but without peak pressure.

TABLE I. Individual data for demographic, anthropometric, and functional
characteristics of subjects in the study.a

Subject Gender Disease
BMI

kg m−2

1 F COPD 22.2 Not familiar
2 M COPD 21.4 Familiar
3 M COPD 20.4 Not familiar
4 M COPD 25.4 Familiar
5 F OHS 55.7 Familiar
6 F OHS 57.6 Familiar
7 F OHS 48.0 Familiar
8 F OHS 54.7 Not familiar
9 F Healthy 23.1 Not familiar
10 F Healthy 19.9 Not familiar
11 M Healthy 24.8 Familiar
12 M Healthy 25.5 Not familiar

aF	female, M	male. In the text, “patient” designates the subjects
with diseases. The term “subject” will be used in a general way.
COPD	chronic obstructive pulmonary disease and OHS
	obstructive hypoventilation syndrome. BMI	body mass index.
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frequency ventilation�.31,32 OHS is defined by the coexist-
ence of obesity �body mass index greater than 30�34 and day-
time hypercapnia.33 The mechanism of hypercapnia in OHS
results from an alteration of ventilatory control �central
component�35 and/or a decreased thoraco-pulmonary compli-
ance leading to a decreased work of breathing �peripheral
component�.36

Three of our patients �P1, P3, and P8� and three healthy
subjects �S9, S10, and S12� were not familiar with noninvasive
mechanical ventilation. The other five subjects were treated
by noninvasive ventilation for at least three years and the
healthy subject S11 was quite familiar with noninvasive ven-
tilatory techniques. All subjects were informed about our
study and their agreement was obtained before measure-
ments.

The subjects were ventilated in a quiet seated position.
Six working conditions were analyzed and compared in this
study. The level of IPAP was increased from 10 to 20 mbar
by 2 mbar steps. For each value, a 10-min period was re-
corded once a stable breathing pattern was observed. During
the 10 min, great care was taken to avoid leaks.

IV. DYNAMICAL ANALYSIS

A. Phase portraits

Ideally, during mechanical ventilation the triggering of
the ventilator should result from inspiratory muscles activity.
The most frequent subject-ventilator asynchrony is when the
subject’s inspiratory effort does not trigger the ventilator.37,38

Ineffective triggerings are very common in ventilator-
dependent patients when dynamic hyperinflation is present,
especially in COPD patients. In this situation, due to a high
EPAPi and when pressure triggering is used, the patient can-
not decrease the airway pressure below the EPAPi level and
the inspiratory effort is therefore ineffective. Although inef-
fective triggering is commonly associated with COPD, it
may also occur in patients with normal or restrictive lung
disease, particularly when the preset IPAP value is high.

A cycle with patients’ ineffective efforts corresponds to a
lack of ventilator triggering. Despite this, there is still a peak
flow �Fig. 4� that results from EPAP provided by the venti-
lator and the exhalation port which allows an input airflow.
For all subjects studied here, inefficient efforts were always
correlated to an oscillation of the airflow during the ventila-
tory cycle without peak pressure.39 Thus, any significant
muscular effort from the subject induces an airflow oscilla-
tion.

For instance, the healthy subject S12 had 41% of ineffec-
tive triggerings with an antibacterial filter but less than 3%
when this filter was removed. Indeed, the filter can be
viewed as a 64% increase of the threshold value �20Qv.39

From a clinical point of view, removing this filter can there-
fore be a solution to decrease the number of ineffective trig-
gerings. The phase portraits reconstructed from the two time
series of the airflow are shown in Fig. 5. When there is a
large rate of ineffective triggering, the phase portrait is char-
acterized by large loops associated with triggered cycles and
small loops corresponding to nontriggered cycles �Fig. 5�a��.
When the rate of ineffective triggering is low ��3% �, this

double structure is no longer observed and the phase portrait
is mainly organized around a large loop �Fig. 5�b��. Such a
large loop can be viewed as a noisy limit cycle since a first-
return map to a Poincaré section �not shown� has no other
structure than those of a cloud of points. Such a lack of
structure is the signature of a high-dimensional dynamics
underlying the fluctuations around the limit cycle associated
with the “ideal” ventilatory cycle. These fluctuations are thus
considered as stochastic. They may result not only from
swallows, coughings, etc., but also from some fluctuations
produced by the central neural mechanism or the feedback
loop of arterial chemorecptors. The phase portrait can be
traced during real-time monitoring and, consequently, it can
be used by the physician to detect ineffective triggering in
real time. In order to do that displaying the trajectory over a
window of 5 min would be convenient.

B. Recurrence plot analysis

A plane projection of the phase portrait provides a global
view of the ventilation. One of the advantages of the recur-
rence plots is that the succession of the events versus time
can be followed. Since the recurrence plot analysis computed

FIG. 5. Effect of an antibacterial filter placed in the ventilatory circuit on the
occurrence of ineffective triggering. Phase portraits reconstructed from the
airflow in subject S12 with IPAP=16 mbar. �a� With the filter: 41% of inef-
fective triggerings. �b� Without the filter: 3% of ineffective triggerings.
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in a Poincaré section helps to obtain a more reliable charac-
terization �see Sec. II�, the maximum of the airway pressure
Pmax during a respiratory cycle is used to build a “discrete”
time series. These maxima can be considered as equivalent to
the set of the intersections of the phase trajectory with a
Poincaré section. As an example, the recurrence plots are
computed from the maxima of the airway pressure for sub-
ject S12 in working conditions similar to those of Fig. 5. The
threshold � is set to �dE�0.1� IPAP. Compared to the
phase portraits, we now have a representation of the succes-
sion of the cycles, black domains corresponding to recur-
rences of the dynamics, that is, succession of similar cycles
�Fig. 6�. Since the rate of ineffective efforts is always less
than 50%, one can expect that a recurrence plot with a large
number of black domains will correspond to a mechanical
ventilation with a low rate of asynchronisms.

This is checked by the recurrence plots shown in Fig. 6.
The recurrent points are quite rare when the antibacterial
filter is inserted �Fig. 6�a��. This means that consecutive
cycles are very different from the pressure point of view, that
is, a triggered cycle is very often followed �or preceded� by a
nontriggered cycle and vice versa. As soon as the filter is
removed �Fig. 6�b��, the nontriggered cycles decrease to 3%
and the recurrence plot is almost black everywhere. Only
small sets of cycles reveal large fluctuations of the airway
pressure, that is, asynchronisms. From the recurrence plots, it
can therefore easily deduced that the mechanical ventilation
is much more efficient when the antibacterial filter is re-
moved.

The Shannon entropy is computed from these recurrence
plots according to our new definition. When computed from
the recurrence plots built from the maxima of the airway
pressure, the Shannon entropy will be denoted as SP. It is
equal to 2.3 with the filter and equal to 0.4 with the filter. As
expected, when the ineffective efforts are not frequent, the
Shannon entropy is significantly smaller than when ineffi-
cient efforts are numerous. The Shannon entropy SP is com-
puted for the 69 data sets recorded in our protocol. It is
strongly correlated to the rate of asynchronisms �nontrig-
gered cycles� �Fig. 7�. The Shannon entropy SP is therefore a
good quantifier of the rate of asynchronisms. In a previous
study,39 we found that an asynchronism frequency below
10% was not relevant for ventilatory comfort. This 10% cor-
responds to a Shannon entropy that is slightly less than 1.
Thus, according to this previous study, a Shannon entropy SP

less than 1 corresponds to a situation where inefficient efforts
are not clinically relevant to the subjects’ comfort.

Another dynamical characteristic relevant for the quality
of the assisted mechanical ventilation is the rate of fluctua-
tions of the total duration of the respiratory cycle. Since the
subject is in a quiet seated position, there is no particular
muscular activity which could affect the oxygen blood rate.
Thus, at least for healthy subjects, the breathing rhythms
should be regular. In particular, the patients very familiar
with mechanical ventilation should be able to manage their
ventilator for breathing in a regular way. Indeed, we assume
that the more regular the dynamics, the better the comfort. It
is therefore important to investigate the fluctuations over the
total duration of the respiratory cycle, Ttot. As we will see,

such fluctuations are not necessarily correlated with the oc-
currence of asynchronisms. Such a lack of correlation invites
us to treat this problem as a bivariate time series problem by
using cross recurrence plots as introduced in Ref. 40, but this
is out of the scope of the present paper and is postponed for
future works.

Recurrence plots are therefore computed from Ttot using

a threshold � set to �dE�0.1� T̄, where T̄ is the “ideal” time
duration cycle corresponding to a respiratory frequency
equal to 12 breaths per min. For the two cases investigated in
Figs. 5 and 6, the recurrence plots also reveal obvious depar-

FIG. 6. Recurrence plots computed from the maxima of the pressure airway
during respiratory cycles recorded for subject S12 with and without an anti-
bacterial filter. �a� With the filter: 41% of ineffective triggerings. �b� Without
the filter: 3% of ineffective triggerings.
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tures but not in the same way as when computed from Pmax.
With the filter, both recurrence plots, from Pmax �Fig. 6�a��
and Ttot �Fig. 8�a��, are quite similar as revealed by the
Shannon entropy, SP=2.3 and those computed from Ttot, ST

=2.5. The fact that ST is slightly greater than SP means that
the lack of recurrences over Ttot affects a slightly larger num-
ber of cycles than those over Pmax. Two reasons may be
invoked: �i� The asynchronisms affect not only the nontrig-
gered cycles but also some of the following ones and �ii�
there is another origin from the fluctuations over the total
duration of the respiratory cycles than the ability to trigger
the ventilator. The first reason seems to be natural but the
second one cannot be rejected too, as shown by the recur-
rence plot computed from Ttot with the filter �compare Fig.
6�b� with Fig. 8�b��. The regularity of the breathing rhythm is
thus not only correlated with the occurrence of asynchro-
nisms. This is obviously confirmed by the Shannon entropy,
since ST=1.9
SP=0.4 for subject S12 without the filter.
There is therefore some other origins for not having a regular
breathing rhythm. These origins are not necessarily associ-
ated with a pathology since subject S12 is healthy. Note that
subject S12 was not familiar with mechanical ventilation.

The Shannon entropy ST was computed for the 69 data
sets recorded and plotted versus the Shannon entropy SP

�Fig. 9�. Basically, four different regions are distinguished in
this figure. First, the square defined by ST�1 and SP�1
corresponds to subjects who have fluctuations neither over
Pmax, nor over Ttot. There is no ambiguity for these subjects
since they have almost no asynchronism and their breathing
rhythms are very regular. Only three subjects, S4, S7, and S11,
have two Shannon entropies less than 1 for most of the IPAP
values. These three subjects were familiar with noninvasive
mechanical ventilation. Note that one has a COPD, one has
an OHS, and one is a healthy subject. The ability to manage
the ventilator is therefore not linked to pulmonary pathology.
One may expect that these subjects are comfortable under
their ventilator.

Second, there is the rectangle defined by ST�1 and SP

�1. These data sets correspond to subjects with less than
10% of nontriggered cycles but quite significant fluctuations
over the total duration of the ventilatory cycle. They corre-
spond to the case investigated in Figs. 5�b�, 6�b�, and 8�b�.
COPD patient S1 is under these conditions for all the IPAP
values and subject S9 for most of them. Both were not famil-
iar with noninvasive mechanical ventilation. COPD patient
S2 is also under these conditions for low IPAP values �IPAP
less than 16 mbar�. There is no OHS patient under these
conditions. This feature suggests that, in general, OHS pa-

FIG. 7. �Color online� Dependence of the Shannon entropy on the rate of
asynchronisms. A positive correlation is clearly evidenced by a linear
regression.

FIG. 8. Recurrence plots computed from the total duration of the cycle, Ttot,
recorded for subject S12 with and without an antibacterial filter in the ven-
tilatory circuit. �a� With the filter: 41% of ineffective triggerings. �b� With-
out the filter: 3% of ineffective triggerings.
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tients would not display significant fluctuations over the total
duration of the ventilatory cycle, Ttot. Obesity tends to reduce
lung volumes and there is no longer possibility for varying
the inspiratory volume and, consequently, for varying the
time duration of the respiratory cycle, at least when there is
no asynchronism. The subjects who are under these condi-
tions �ST�1 and SP�1� are therefore not familiar with non-
invasive mechanical ventilation and would be able to induce
fluctuations of their breathing rhythm, mainly by increasing
the work of breathing in order to trigger the ventilator.

Third, the rectangle is defined by ST�1 and SP�1. For
these cases, there are many ineffective efforts although the
breathing rhythm is regular. Two patients correspond to these
conditions, one COPD and one OHS. The COPD patient S3

was not familiar with mechanical ventilation. Nevertheless,
he was very careful about his breathing �nothing particular
was asked of him� and he was thus able to keep his respira-
tory rhythm constant, although it was unpleasant for him.
Indeed, he was tired at the end of the six measurement peri-
ods. OHS patient S5 was familiar with mechanical ventila-
tion. This patient was therefore able to keep constant the
time duration of his respiratory cycles although numerous
cycles were not triggered. We believe that these patients
were able to “manage” their ventilator by imposing a con-
stant total duration for the respiratory cycle, in spite of many
asynchronisms. Their pathology prevents them from a great
ability to trigger the ventilator but their ventilatory command
and their respiratory muscles can provide the work of breath-
ing, whatever the asynchronism rate.

The fourth part of the graph shown in Fig. 9 is associated
with a sector such as ST�1 and SP�1. But all the points
obeying to such conditions are not spread over this whole
upper right rectangle but are mainly in a restricted sector
between the first bisecting line �defined by SP=ST� and an-
other line defined by SP=0.5ST. Both are displayed in Fig. 9
as diagonal dashed lines. The fact that all the points are
located below the bisecting line means that, in general, SP

�ST, with the exception of the third case previously men-

tioned. This results from the fact that a nontriggered cycle
has some effects on the preceding and the following cycles.
The fluctuations over the time duration affects thus more
numerous cycles than fluctuations over Pmax. Most of the
points located in this fourth sector correspond to subjects not
familiar with a mechanical ventilation �only patient S2 and S6

are familiar�. For all of these subjects, being not familiar
with mechanical ventilation there is an obvious correlation
between SP and ST �with a coefficient of correlation of about
1�. For these patients, the fluctuations over the time duration
Ttot results from the asynchronisms. We conjecture that, for
most of them, they can be trained. For instance, the healthy
subject S10 presented ST�1 and SP�1 for IPAP values
smaller than 16 mbar. In fact, it was the three first periods of
10 min during which this subject was assisted by noninva-
sive mechanical ventilation. A few months later, these three
data sets were recorded again with the same subject. For all
of them, the rate of nontriggered cycles decreased below
10% and both entropies became smaller than 1 �points
marked by A� in Fig. 9�. Unfortunately, we were not able to
repeat the measurements with the other patients who were
not familiar with mechanical ventilation. There are also some
subjects who had one or two points located in the fourth
sector: this will mainly depends on the parameter settings of
the ventilator as the IPAP value. Patient-ventilator interac-
tions characterized by a point in this fourth section do not
correspond to the best conditions for assisted mechanical
ventilation and we can expect that the quality of their venti-
lation, at least from the mechanical point of view, could be
improved by changing the parameter setting of the ventilator
or by training the patient.

These investigations lead us to four classes as follows:

�1� SP�1 and ST�1 familiar;
�2� SP�1 and ST�1 not familiar, COPD or healthy;
�3� SP�1 and ST�1 familiar or careful about its breathing

rhythm, inefficient efforts;
�4� SP�1 and ST�1 not familiar or not optimize the pa-

rameter setting, inefficient efforts.

FIG. 9. �Color online� Shannon entropy ST versus Shannon entropy SP for
the 69 data sets recorded during our protocol. Integers i�i� �1;9�� designate
subjects Si for the six measurements at different IPAP values. Letters A, B,
and C designate subjects S10, S11, and S12, respectively.

FIG. 10. Shannon entropy ST versus Shannon entropy SP for the 69 data sets
recorded during this study. Integers i correspond to the ith IPAP value ac-
cording to 10, 12, 14, 16, 18, and 20, respectively.
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By plotting the Shannon entropy SP versus the Shannon en-
tropy ST according to the IPAP value set for the measure-
ments �independently of the subject under considerations�, it
occurs that there is no relationship between each of the sec-
tors of the graph and the IPAP value �Fig. 10�. Indeed, any
IPAP value is found in each sector. The IPAP value is there-
fore a not so relevant parameter for the variability in the
dynamics underlying patient-ventilator interactions.

V. CONCLUSION

Recurrence plots can be used to investigate the proper-
ties of complex dynamics as widely used, particularly in bio-
medicine. A new definition for the Shannon entropy has been
proposed to obtain an entropy which increases as the chaotic
dynamics is more developed as expected for a Shannon en-
tropy. In particular, we showed that it is now strongly corre-
lated to the largest Lyapunov exponent, according to Pesin’s
conjecture. Although Shannon entropies are not necessarily
dynamical invariants, the Shannon entropy computed in a
Poincaré section is related to the largest Lyapunov exponent
which is a dynamical invariant. Thus, the Shannon entropy
computed from the maxima of the airway pressure—or any
other dynamical variable—is also a dynamical invariant as
Renyi entropy which can also be estimated from recurrence
plots.41 Note that the Shannon entropy computed from the
time duration of cycles can be safely considered as a dynami-
cal invariant only in the case of phase coherent dynamics. It
remains an open questions in other cases.

The recurrence plots and the associated Shannon entropy
were used to investigate the dynamics underlying patient-
ventilator interactions. In particular, we were able to show
that, at least two dynamical measures are useful to character-
ize the quality of the noninvasive mechanical ventilation,
namely the Shannon entropies computed from the maxima of
the airway pressure and from the total duration of the venti-
latory cycle. The first entropy estimates the rate of asynchro-
nisms �ineffective triggerings� and the second entropy quan-
tifies the fluctuations over the total duration of ventilatory
cycles. These two measures are not necessarily correlated
and strongly depends whether the subjects are familiar to
mechanical ventilation or not. Basically, when these two en-
tropies are less than 1, it can be assumed that, from a me-
chanical point of view, the parameter setting of the ventilator
are optimal. Chest physicians may use these quantificators
computed in real time to optimize the settings of the venti-
lators. It is clear that learning to breathe under the influence
of a ventilator is a significant factor determining the entropy
of the resulting signal. Thus, these quantificators can be used
to determine the quality of the patient-ventilator interactions
but cannot be used to make a diagnostic statement, at least
until patients with similar experience with the respirator are
considered.
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