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Abstract. In practical problems of phase-space reconstruction, it is usually the case that
the reconstruction is much easier using a particular recorded scalar variable. This seems to
contradict the general belief that all variables of a dynamical system are equivalent in phase-space
reconstruction problems. This paper will argue that, in many cases, the choice of a particular
scalar time series from which to reconstruct the original dynamics could be critical. It is argued
that different dynamical variables do not provide the same level of information (observability) of
the underlying dynamics and, as a consequence, the quality of a global reconstruction critically
depends on the recorded variable. Examples in which the choice of observables is critical are
discussed and the level of information contained in a given variable is quantified in the case
where the original system is known. A clear example of such a situation arises in the Rössler
system for which the performance of a global vector field reconstruction technique is investigated
using time series of variablesx, y or z, taken one at a time.

1. Introduction

The aim of a phase-space reconstruction is to generate a multidimensional phase space
from a recorded scalar time series. It is a prerequisite step for analysing the behaviour of
a dynamical system which is only known from a single (scalar) time series. A pioneering
paper by Packardet al [1] points out two ways of reconstructing a state space, namely by
using time delay or time derivative coordinates. Another kind of coordinates, namely
principal components [2], may also be used. Gibsonet al [3] demonstrated that the
relationship between delays, derivatives and principal components consists of a rotation
and a rescaling. Consequently, from Gibson’s point of view, statements about the nature of
the equivalence between the original and the reconstructed phase portraits would not depend
on the coordinate system.

Furthermore, there is also a great deal of interest in reconstructing a set of differential
equations from a single variable time series ([4–12] among others). According to Takens’
theorem [13], it is always possible to construct an embedding of a time series in a phase
space in the absence of noise. To ensure, with probability one, that a reconstruction is
an embedding, i.e. that there exists a diffeomorphism from the original phase space to the
embedding space, the embedding dimension has to bedE > 2DH+1 whereDH ideally refers
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to the Hausdorff–Besicovitch dimension of the attractor studied. If the above criterion is not
satisfied, the existence of a diffeomorphism is not ensured but nevertheless remains possible.
Indeed, Saueret al [14] demonstrated that, in principle, a reconstructed phase space with a
dimension equal to the first integer greater than the correlation dimension could be sufficient
to completely describe the dynamics of the system studied. This statement has also been
confirmed by computing an embedding dimension with the aid of a false nearest-neighbours
method [15–17].

Unfortunately, it is also established that a time series, even infinite and noise-free, may
fail to contain all relevant information, meaning that the measurement function introduced
in Takens’ theorem is not well defined. This fact also means that the ability to observe
the state of a system may depend on the recorded variable, as exemplified in [18–20].
Obvious cases are provided by equivariant systems for which two kinds of time series
may appear (i) equivariant time series containing information about symmetry properties
and (ii) invariant time series without any information on symmetry properties, such as
for the well known Lorenz system (see [18, 19]). More generally, it is not ensured that all
dynamical variables of a given system are equivalent to obtain reconstructed phase spaces or
reconstructed models. In this paper, such a statement is exemplified in the case of the Rössler
system for which global vector field reconstructions in a 3D space, from thez variable,
always failed up to now [8]. Variablez of the R̈ossler system therefore exhibits a somewhat
pathological character. This is confirmed, from another point of view, by Kugiumtzis [20]
who states that thez variable hardly allows one to identify the orbital periods while they are
easily identified from the other variables. Also, the correlation dimension is significantly
underestimated when using variablez while it is correctly estimated fromx measurements
[20].

This paper intends to discuss and show that the ability of reconstructing the phase space
of a system may depend critically on the observable being used. Such a dependence will be
quantified by using an observability index in the case of well known systems. Our goal here
is to clearly exhibit that all dynamical variables of a given system are not equivalent when
their time evolutions are used as scalar time series to investigate the underlying dynamics.
An explicit example will be discussed in the case of the variables of the Rössler system for
which the relative observability among the variables of this system is quantified by using
the observability index. It will be shown that it is more difficult to obtain a model from the
z variable than from the others as suggested by the observability index.

The paper is organized as follows. Section 2 briefly describes the global vector field
reconstruction technique and points out the problem arising when reconstructing a model
from the variablez of the R̈ossler system. Section 3 uses an observability index to compare
the relative observability of thex, y andz variables of the R̈ossler system. The results in
this section are in good accord with widespread practice of reconstructing attractors from
such a system. Section 4 exhibits the difficulties encountered in reconstructing a model
from the variablez of the R̈ossler system. Section 5 is a conclusion.

2. Global vector field reconstruction

2.1. Theoretical background

Let us consider a time-continuous dynamical system described by a set of ordinary
differential equations:

ẋ = f(x;µ) (1)
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in which x(t) ∈ Rn is a vector valued function depending on a parametert called the time
andf , the so-called vector field, is ann-component smooth function generating a flowφt .
Also, µ ∈ Rp is the parameter vector withp components, assumed to be constant in this
paper. The system (1) is called theoriginal system. The original system may be written as

ẋ = f1(x, y, z)

ẏ = f2(x, y, z)

ż = f3(x, y, z).

(2)

It is now assumed that the observer numerically records a scalar time series. By convention,
in this section, the observable is taken to beX = x.

The aim is then to reconstruct a vector field equivalent (we will later discuss in which
sense) to the original system under the form of a reconstructed system made of the observable
and of its derivatives according to

Ẋ1 = X2

Ẋ2 = X3

...

ẊdE = F(X1, X2, . . . , XdE )

(3)

where dE is the embedding dimension andF depends ondE variables which are the
successive derivatives ofx

X1 = x
X2 = ẋ
X3 = ẍ
...

(4)

F is called the standard function and can be estimated by using a multivariate polynomial
basis on nets [8] which may be built by means of a Gram–Schmidt orthogonalization
procedure [21]. The algorithm requires the definition of reconstruction parameters which
are (i) dE , the embedding dimension, (ii)Nq , the number of vectors(X1,i , X2,i , . . . , XdE,i)

(i ∈ [1, Nq ]) on the net, withi a time index, (iii) 1t , the time step between two
successive such vectors which may be expressed as the number of vectors,Ns , sampled
per pseudo-period, (iv)Np, the number of retained multivariate polynomials and (v)τw, the
window length on which the derivatives are computed by using a sixth-degree interpolated
polynomial. These interpolated polynomials are centred at each point by using the six nearest
neighbours. Derivatives are then obtained by analytically differentiating such polynomials.
The estimated standard function, denotedF̃ , then has the form

F̃ (X1, X2, . . . , XdE ) =
Np∑
p=1

Kp 4
p (5)

where4p is a multivariate monomial

4p = Xn1
1 X

n2
2 . . . X

ndE
dE

(6)

in which the integersp are related tondE -tuplets(n1, n2, . . . , ndE ) by a bijective relationship
discussed in [8]. Reconstruction parameters are determined with the aid of an error function
described in [22]. Large sets of reconstruction parameters can, in practice, be related to an
easy reconstruction.
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2.2. Equivalences for the R¨ossler system

The original system is now assumed to be the Rössler system

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(7)

wherea = 0.398,b = 2.0 andc = 4.0 are the control parameters. The minimal embedding
dimensiondE is therefore equal to 3. In this case, a transformation map8i expressing the
derivative coordinates(X, Y, Z) versus the original coordinates(x, y, z) may be obtained
according to

8i ≡


X = xi
Y = ẋi = f (x, y, z)
Z = ẋ ∂f

∂x
+ ẏ ∂f

∂y
+ ż ∂f

∂z

(8)

where the subscripti depends on thexi time series used (xi = x, y or z). Therefore,
8i : R3→ R3 is a well-defined map without any singularity since the original vector field
f is smooth. Let us now focus on the original attractorAOS defined by(x(t), y(t), z(t)) in
the limit t →∞. The reconstructed attractorARS generated by integrating the reconstructed
model may be obtained fromAOS by using8i . Also, as the original system is known,
algebraic manipulations allow one to find the exact expression of the standard function
F(X, Y,Z), for i chosen.

Let us consider a transformation map8 = 8i , (i = x, y or z). We are then interested to
know how an original attractorAOS is mapped by such a transformation8 and the nature of
the equivalence betweenAOS andARS . Algebraic considerations on8 determine whether
the transformation is an embedding, an immersion or worst an immersion that fails to be
one-to-one [14].

When8 defines a diffeomorphism, the reconstructed attractor is subject to the most
severe constraints. Such a diffeomorphic equivalence between original and reconstructed
attractors may be established by relying on the local properties of the transformation8.
When dE = n, this is achieved following the inverse function theorem [23, 24] which
states that the transformation8 is a diffeomorphism iff its Jacobian matrixD8 is nowhere
singular. Such a diffeomorphism indeed exists between the original attractorAOS and the
attractor reconstructed from they variable of the R¨ossler system. Conversely,x and z
variables provide transformations8x and8z with Jacobian matrices that vanish on a set
of Lebesgue measure zero. These facts may be readily checked by the reader with a small
amount of algebra.8x and 8z therefore define almost everywhere a diffeomorphism.
Consequently, they variable is the best observable to reconstruct the dynamics of the
Rössler system from a scalar time series.

It must be noted, however, that a transformation8 can in practice be considered as an
embedding even if it fails to pass the analytical test in some subset of the original phase
space. Indeed, we are only interested in the properties of the restriction of the map to the
strange attractor, which is a subset of volume zero. Therefore, singularities located outside
of the strange attractor could possibly not matter when a global vector field reconstruction
is the issue considered. However, inner singularities can greatly affect the quality of a
reconstructed model as it be shown using thez variable of the R̈ossler system.



Phase-space reconstructions 7917

2.3. Influence of singularities

The original system is the R̈ossler system whose phase space is spanned by the original
coordinates(x, y, z). The reconstructed attractors which are spanned by derivative
coordinates(X, Y, Z) are denotedAx , Ay andAz where the subscript is associated with
the observable used. Transformations8x , 8y and8z which map the original coordinates
(x, y, z) to the derivative coordinates(X, Y, Z) may be easily obtained by using relation (8).
In any case,X will be associated with the scalar time series from which the attractor is
reconstructed.

When the transformation8 defines a diffeomorphism, both8 and8−1 are everywhere
defined and, consequently, do not involve any singularity, i.e. in particular do not involve
any rational function. To a polynomial vector field then corresponds a polynomial standard
function. In the case of the R̈ossler system, this happens wheny is the observable. Indeed,
the standard functionFy is a polynomial [8, 25]:

Fy = −b − cX + (ac − 1)Y + (a − c)Z − aX2+ (a2+ 1)XY − aXZ − aY 2+ YZ. (9)

The polynomial structure of this exact standard functionFy matches the polynomial structure
of the estimated standard functioñFy which is imposed by the reconstruction algorithm.
As a consequence, reconstructions with the variabley are found to be exceptionally robust,
i.e. they are successful for a very large set of reconstruction parameters. The variabley is
therefore a very good observable for reconstructing the Rössler system.

Conversely,8x and8z do not define a diffeomorphism everywhere but only almost
everywhere. Indeed, the Jacobian matrices become similar on sets of Lebesgue measure
zero, namelyx = a+ c for 8x andz2 = 0 for 8z [25]. Accordingly, the maps8−1 exhibit
singularities as shown below:

8−1
x ≡


x = X
y = −b +X + Z + Y (c −X)

a + c −X
z = b +X − aY + Z

a + c −X

with


X = x
Y = ẋ
Z = ẍ

(10)

and

8−1
z ≡


x = c + Y − b

X

y = −X − Z
X
+ Y (Y − b)

X2

z = X

with


X = z
Y = ż
Z = z̈.

(11)

The standard functionFx reads as

Fx = ab − cX +X2− aXY +XZ + acY + (a − c)Z − (a + c + Z − aY + b)Y
a + c −X (12)

and presents a first-order singularity while the standard functionFz presents a second-order
singularity:

Fz = b − cX − Y + aZ + aX2−XY + (ab + 3Z)Y − aY 2− bZ
X

+ 2bY 2− 2Y 3

X2
. (13)

In such cases, the reconstructed standard functions do not possess the same mathematical
structure as the exact standard function but, due to the Weierstrass approximation theorem
[26], the reconstructions may still be successful depending on how the reconstructed function
will be close to the original function. However, we expect that successful reconstructions
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will become more difficult when the order of the singularity increases. We therefore propose
a first classification of the dynamical variables of the Rössler system according to the order
of the singularity involved in the standard function, associated with greater or lesser facility
to reconstruct the phase space. Loosely speaking, this can be related to the amount of
information observed using such a variable. We then obtainy F x F z where F means
‘provides a better observability of the underlying dynamics than’. This order ranges from
the easiest case (diffeomorphism, no singularity, i.e. zeroth-order singularity) to the most
difficult case of the variablez. Indeed, the variablex did allow us to obtain satisfactory
reconstructions [8] while, when using variablez, the global vector field reconstruction
technique always failed until now. It is one of the by-products of this paper to reconstruct
the R̈ossler system using this variable, as detailed in section 4.

3. Observability Test

The concept of observability in linear system theory is standard and well defined [27].
Consider the system{

ẋ = Ax + Bu
ẏ = Cx (14)

where x ∈ Rn is the state vector,y ∈ Rr is the measurement vector,u ∈ Rp is the
input vector and{A,B,C} are constant matrices. Thus the system (14) is said to be state
observable at timetf if the initial statex(0) can be uniquely determined from knowledge
of a finite time history of the inputu(τ) and outputy(τ), 0 6 τ 6 tf [28]. It should be
noted that the definition is still valid for autonomous systems, that is, foru(τ) = 0.

One way of testing if the system (14) is observable is to define theobservability matrix

Q =


C

CA

CA2

...

CAn−r

 . (15)

The system (14) is therefore state observable if matrixQ is full rank, that is if rank(Q) = n.
This definition is a ‘yes’ or ‘no’ measurement of observability, i.e. the system is either
observable or not. In practice, however, a system may gradually become unobservable as a
parameter is varied. Thus it is useful to define the degree of observability as

δo = |λmin(QQ
T )|

|λmax(QQT )| (16)

where (·)T indicates the transpose,λmin and λmax are the minimum and maximum
eigenvalues. Thus 06 δo 6 1, and the lower bound is reached when the system is
unobservable. Note that the index (16) is a type of condition number of the observability
matrix.

In this section the observability index is used to quantify the relative observability of
the R̈ossler system when observed from variablesx, y andz. In order to do so, the Jacobian
of the system is evaluated along trajectories on the attractor, observed from such variables.
Thus in this case matrixA is the Jacobian of the R̈ossler system,B = 0 and three different
situations for matrixC are considered, namelyC = [1 0 0], C = [0 1 0] andC = [0 0 1]
indicating when the system is observed fromx, y andz, respectively.
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Figure 1. Observability index for the R̈ossler system along a trajectory with 1500 samples.
(a) δox , (b) δoy , and (c) δoz. The mean values areδox = 0.024, δoy = 0.141 andδoz = 0.003.

Figure 2. Rössler attractor. In this figure, two different symbols were used to plot the
trajectories, depending on the relative degree of observability. At each point on the attractor, the
observability index (16) was calculated for the case of the variablez. If the respective value was
greater than a given threshold the point was indicated with a cross, otherwise it was indicated
with a dot.

Figure 1 shows the observability index calculated for the Rössler system over 1500
samples of an orbit of the chaotic attractor observed from the three variables. The mean
values areδox = 0.024, δoy = 0.141 andδoz = 0.003. Both the plots and these average
values are in perfect accord with the results presented in section 2.3. It is interesting to
point out that the observability index calculated from they variable is constant, that is, it
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Figure 3. The dynamical variablez presents lethargies during which it contains a low rate of
information on the time evolution of the other variables.

does not depend on where the system is in phase space. This is presumably a consequence
of the existence of a diffeomorphism. On the other hand,δox is quite oscillatory andδoz is
negligible most of the time. The values of the observability index in these cases obviously
depend on where the system is in phase space. For instance, the observability index (16)
shown in figure 1 is displayed in figure 2 versus the location on the Rössler attractor for the
case of the variablez. If δoz was greater than a certain threshold crosses were used in the plot
otherwise dots were employed. This figure clearly shows that the Rössler attractor becomes
more observable when it leaves thexy plane, i.e. when the evolution of the dynamics is
approximately parallel to thez variable. Thexy plane corresponds to the neighbourhood
of the singularityz = 0 of the standard functionFz. We therefore conjecture that whenever
the system comes close to a singularity (see section 2.3) the respective observability index
decreases.

In closing this section, it is pointed out that the same procedure outlined here was
performed for the Lorenz system. Once again, the results confirmed previous findings,
namely that for such a system thez variable is the most adequate for phase-space
reconstruction [8]. In fact, for the Lorenz systemδoz is one order of magnitude greater
thanδoy , the second largest observability index.

4. Reconstructing the R̈ossler system

The very low observability index of thez variable of the R̈ossler system may be understood
by remarking that lethargies (long time with very small amplitude change) are observed on
thez time series, even though the dynamical variablesx andy present significant amplitude
changes (figure 3). When working in a reconstructed 3D space, these lethargies induce
the presence of segments close to tangency, i.e. close to situations where identical phase
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Figure 4. Reconstruction of a limit cycle instead of a chaotic attractor starting from the variable
z of the R̈ossler system.

points would generate different futures, conflicting with causality. This phenomenon is
amplified by sampling the time series both in time and in amplitude since some amount of
information concerning the differential structure is then lost. Such quasi-tangencies cannot
necessarily be resolved by working in a 3D phase space. The determinism principle is
then in practice violated and, as a result, satisfactory reconstructed models cannot easily be
obtained. Instead, depending on the reconstruction parameters, we find that the reconstructed
models generate a limit cycle (figure 4) or are numerically unstable and diverge to infinity
after a transient behaviour (figure 5). How the reconstruction fails (figures 4 and 5) makes
much sense.

Since the dynamics cannot be successfully captured by a 3D model, we use Takens’
theorem as a guide and ask whether a higher embedding dimension would allow one to
obtain a satisfactory model. As a preliminary test, we then evaluate an estimation of the
embedding dimension by using an adapted false nearest-neighbour technique [17]. We
then find that an embedding dimension equal to 3 is satisfactory for the variablesy andx
(figure 6). For the variablez, however, figure 6 points out that an embedding dimension
as large as 8 might be required. The results in figure 6 were computed with a rather
small amount of data (10 000 points in the time series) and, in this example, the sampling
of trajectories close to tangency blurs information in a way which is similar to additive
noise. They therefore must be interpreted with some care and taken as indicative. They
nevertheless suggest that a satisfactory model with variablez could be obtained by increasing
the embedding dimension. Also, they suggest that such a large embedding dimension as
dE ≈ 8 could be unnecessary since figure 6 exhibits some amount of saturation fordE ≈ 4.
It is expected also that such an increase indE could be sufficient to smooth out the effect
of the quasi-tangencies observed in a 3D space.

We therefore attempt a global vector field reconstruction in a 4D phase space.
A successful reconstruction is then indeed obtained with the following values of the
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Figure 5. Reconstruction of a numerically unstable model starting from the dynamical variable
z of the R̈ossler system. The trajectory is ejected to infinity from the vicinity of the origin
associated to the pole of the approximated standard function.

Figure 6. Embedding dimension of the reconstructed attractors computed by using an adapted
false nearest-neighbour method. In this method, the ordinates saturate when the embedding
dimension is large enough. IndexE1(dE) measures the relative change in the average distance
between two neighbour points inRdE and their respective images inRdE+1 when the embedding
dimension is increased fromdE to dE + 1.

reconstruction parameters:

dE = 4

Nq = 150

Ns = 14

Np = 35

(17)

leading to the chaotic attractor displayed in figure 7. The coefficientsKp of the estimated
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Figure 7. Plane projection of the attractor generated by integrating the four-variable
reconstructed model.

Figure 8. Plane projection of the attractor generated by applying the map8z to the original
attractor.

standard functionF̃z are listed in table 1. This attractor compares fairly well with the
attractor obtained by applying the map8z to the original attractor (figure 8), in which

8z =


X = z
Y = c + Y − b

X

Z = −X − Z
X
+ Y (Y − b)

X2
.

(18)

The basic structure of both attractors is the same and slight differences in amplitude arise
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Table 1. Kp coefficients of the approximated standard functionF̃z.

p Kp i j k l

1 0.489 407 814 957 45 0 0 0 0
2 −0.145 639 664 263 10· 102 1 0 0 0
3 0.139 255 049 017 02· 102 0 1 0 0
4 −0.635 197 165 563 23· 101 0 0 1 0
5 0.586 960 526 882 71· 101 0 0 0 1
6 0.148 613 068 193 55· 103 2 0 0 0
7 0.531 670 076 508 45 1 1 0 0
8 −0.432 326 112 170 02· 102 1 0 1 0
9 −0.422 885 224 692 21· 102 1 0 0 1

10 0.171 734 374 763 68· 103 0 2 0 0
11 0.788 866 514 520 96· 102 0 1 1 0
12 −0.810 356 308 253 23· 101 0 1 0 1
13 0.127 851 608 885 64· 102 0 0 2 0
14 −0.104 919 989 280 33 0 0 1 1
15 0.152 837 252 970 32· 10−1 0 0 0 2
16 −0.229 126 919 438 01· 103 3 0 0 0
17 −0.715 880 744 707 95· 102 2 1 0 0
18 −0.548 332 996 824 38· 102 2 0 1 0
19 −0.926 491 592 260 28 2 0 0 1
20 0.141 973 897 883 40· 102 1 2 0 0
21 −0.846 907 146 269 83· 101 1 1 1 0
22 −0.613 126 828 204 80 1 1 0 1
23 −0.845 155 888 763 10· 101 1 0 2 0
24 −0.116 514 699 050 96· 101 1 0 1 1
25 −0.858 101 354 152 74· 10−1 1 0 0 2
26 0.421 871 751 410 20· 101 0 3 0 0
27 0.121 781 905 212 47· 102 0 2 1 0
28 0.233 228 325 370 95· 101 0 2 0 1
29 −0.659 674 148 554 91 0 1 2 0
30 0.467 071 843 045 66 0 1 1 1
31 0.106 571 853 493 62 0 1 0 2
32 −0.408 361 154 012 21 0 0 3 0
33 −0.145 437 760 421 84 0 0 2 1
34 −0.862 179 781 151 60· 10−3 0 0 1 2
35 −0.123 550 755 401 24· 10−3 0 0 0 3

from the fact that population of periodic orbits are slightly different as explained below.
We would now like to present an objective validation of the reconstructed model.

When the dimension of the phase space is 3, our favourite method is the topological
characterization based on knot theory [29, 30]. Unfortunately, in the present case where
dE = 4, no stricto sensutopological characterization is so far available. Nevertheless,
because the fourth variable is essentially used to unfold the manifolds on which the chaotic
attractors are built, we may expect that, working in the subspace(X, Y, Z), a sufficiently
good topological characterization could be achieved. This seems to be supported by the
comparison of figures 7 and 8, where one plane projection (figure 7) comes from a 4D space
while the other (figure 8) comes from a 3D space.

A first-return map to a Poincaré section is then computed. It exhibits three monotonic
branches separated by two critical pointsX1 and X2 (figure 9). The presence of three
branches indicates that, in this example, the chaos is slightly more developed than for the
original attractor since a few periodic orbits are then encoded with a symbol 2 [30]. We
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Figure 9. First-return map to a Poincaré section from the four-variable reconstructed model.

Table 2. Linking numbers of pairs of periodic orbits extracted from the reconstructed attractor.
x designates couples of periodic orbits for which linking numbers cannot be counted in a plane
projection due to the presence of long segments close to tangency.

(1) (10) (100) (101) (1000) (1001)

(10) +1
(100) +1 +2
(101) +1 +2 +3

(1000) +1 +2 +3 +3
(1001) +1 +2 +3 x +4

(10000) +1 +2 +3 +3 +4 +4
(10001) +1 +2 +3 +3 x x

therefore start by checking that the topological properties of the 4D reconstructed model
are well characterized by a template with a linking matrix:

M ≡
[ 0 −1 −1
−1 −1 −2
−1 −2 −2

]
(19)

which is the linking matrix for a three-strip template of the Rössler system [30]. All linking
numbers between pairs of periodic orbits extracted from the attractor generated by the
reconstructed 4D model are then indeed found well predicted by this template as reported
in table 2. The reconstructed attractor therefore presents topological properties compatible
with the original R̈ossler system.

It remains to explain why the periodic orbits are more numerous than for the original
Rössler system. It has been shown that noise benefits chaotic behaviour [25, 11] and,
consequently, increases the population of periodic orbits. Since many segments of a chaotic
trajectory are close to tangency in the reconstructed phase space spanned by the coordinates
derived from the variablez of the R̈ossler system, discretization of the time series during the
recording process acts like a noise contamination by diffusing the structure of the dynamics
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in the region where tangencies are observed. The population of periodic orbits is therefore
increased due to the measurement function. These perturbations are only located in a small
region of the phase portrait rather than spread on the whole phase space and, therefore, are
not efficiently smoothed by the reconstruction algorithm in contrast to what happens for a
genuine noise contamination [11].

The increase of the population of periodic orbits is equivalent to a shift of the control
parameter. Indeed, the kneading sequence for the 4D reconstructed dynamics is encoded
by (20010) which is the one that we could obtain in the 3D original system fora ≈ 0.44,
in contrast with the actual valuea = 0.398.

5. Conclusion

Many chaoticians understand Takens’ theorem as stating that all variables of a dynamical
system are equally effective in reconstructing the original dynamics from a scalar time
series. Unfortunately, as demonstrated in the case of the Rössler system, different variables
contain ‘different levels of dynamical information’. In practice, this means that it could
be easier to reconstruct the phase space from a particular variable or, conversely, it could
be extremely difficult to reconstruct it from certain observables. Such lack of equivalence
has been exemplified by using an observability index computed from the Jacobian matrix
for the R̈ossler and Lorenz systems and the results are in good accord with previous
findings. Although the concepts discussed in this paper are of great relevance in phase-
space reconstruction and identification problems, as it stands it is limited to the case in
which the Jacobian matrix is knowna priori. Indeed, when we are facing an unknown
system whose scalar time series only is known, the important problem is to know if it is
a good observable or not. Currently, there is no answer to this question while the time
evolution of a single variable is recorded. Nonetheless it is argued that it should be possible
to reconstruct multivariable models and therefore Jacobians using the theory in section 3.
This is left for future research.
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