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Hamiltonian vs dissipative chaos
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• Hamiltonian dynamics: phase volume is conserved, Poincaré recurrence theorem 

• Dissipative dynamics: phase volume shrinks, attractors are observed 

Hamiltonian chaos: long history starting from Poincaré treatise on the three-body problem, 
with seminal contributions of Hadamard, Birkhoff, KAM, Chirikov and others 

In dissipative systems first examples of transient chaos appeared (van der Pol and van der 
Mark, Cartright and Levinson, and others) and only later examples of strange attractors 
(Lorenz, Smale and Williams, Roessler, Hénon, and others)



Hamiltonian dynamics with two degrees of freedom
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The simplest Hamiltonian autonomous system where chaos can occur is a particle in a two-
dimensional potential 

 

One of the first examples: Hénon-Heiles potential 

 

H =
p2

x + p2
y

2
+ U(x, y)

U(x, y) =
x2 + y2 + 2x2y − 2

3 y3

2



Hénon-Heiles example of Hamiltonian chaos
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Michel Hénon 
(1931-2013) 



Making Hamiltonian system dissipative

5

Adding pure dissipation: Energy decreases, attractors are steady states at local minima of 
potential energy 

Adding activity:  

 

An active velocity-dependent force describes convergence (with rate ) of the speed to the 
preferred speed  (“cruise control”) [e.g., Romanczuk et al., Eur. Phys. J. Spec. Topics, 2012, 202:1-62] 

There are also other models of active particles, in many of them (e.g., in the famous Vicsek 
model) noise is included 

Here I consider deterministic dynamics only

· ⃗r = ⃗v , · ⃗v = − ∇U +
1
μ

(V2 − v2) ⃗v

μ−1

V



Quasiperiodic and chaotic attractors in a harmonic potential
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Numerical solution of the equations:  

 

yields quasiperiodic and chaotic attractors, but the latter are rare

· ⃗r = ⃗v , · ⃗v = − ∇U +
1
μ

(V2 − v2) ⃗v , U(x, y) =
x2 + by2

2

Poincaré maps for  and 
different values of activity 
parameter  show  quasiperiodic 
(blue) and chaotic (red) attractors

b = 2

μ



Overactive limit
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It is convenient to introduce speed  and direction of motion  via :  

 

Take the overactive limit (very strong cruise control) , then  and the resulting 
equations are 

 

In “natural coordinates”  we obtain  

v ⃗n ⃗v = v ⃗n
· ⃗r = ⃗v , · ⃗v = − ∇U +

1
μ

(V2 − v2) ⃗v ⇒

· ⃗r = v ⃗n, ·v =
1
μ

(V2 − v2)v − ∇U ⃗n, · ⃗n =
−∇U + ⃗n(∇U ⋅ ⃗n)

v
μ → 0 v = V

· ⃗r = V ⃗n V · ⃗n = − ∇U + ⃗n(∇U ⋅ ⃗n)

⃗n = (cos θ, sin θ)
dx
dt

= V cos θ
dy
dt

= V sin θ

dθ
dt

=
1
V (−∂yU cos θ + ∂xU sin θ)



Hamiltonian formulation
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Remarkably, the equations of motion can be formulated as a Hamiltonian system with 
Hamilton function 

 

Because the energy is conserved,  and a substitution 

 
leads to the equations in the standard form 

The same Hamiltonian describes the ray dynamics in geometrical optics 

H(x, y, px, py) = V p2
x + p2

y − V2 exp [−
U(x, y)

V2 ] = 0

p2
x + p2

y = V−1 exp[−U(x, y)V−2]

px = V−1 exp[−U(x, y)V−2]cos θ, py = V−1 exp[−U(x, y)V−2]sin θ

H(x, y, px, py) = p2
x + p2

y − n(x, y) = 0



Small velocities: time-scales separation
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For small   we have a fast adjustment of the angle  to the gradient of the potential  
according to  

 

and then slow drift along the gradient toward the minimum of the potential [the dynamics 
 was used by Chepizhko & Peruani (PRL, 2013) and Peruani & Aranson (PRL, 

2018)] 

Near the minimum of the potential, the time-scale separation fails 

Close to a potential minimum we can consider the potential as a harmonic one

·x = V cos θ, ·y = V sin θ, V ·θ = − cos θ∂yU + sin θ∂xU

V θ U

·θ = V−1 |∇U |sin(α − θ), sin α = −
∂yU

|∇U |
, cos α = −

∂xU
|∇U |

·θ = sin(α − θ)



Motion in a harmonic potential
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In a harmonic potential  the velocity parameter can be renormalized to one, 

and remains only an irrelevant parameter 

Uh =
x2 + b2y2

2
b

•chaotic motion of particles 
coming from large values 
of potential 

•quasiperiodic motion of 
particles starting close to 
the minimum

Nonuniform distribution on the Poincare map because we work with non-canonical 

variables: Density ∼ exp [−
U(x, y)

V2 ]



Motion in a harmonic potential
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The same dynamics, but the 
Poincaré map is plotted in 
canonical variables



Motion in a harmonic potential: movie
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Chaotic scattering on a potential well
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Alignment: dissipative interaction of particles
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Aligning coupling of Kuramoto/Viscek type (global) 

 

 

Synchronization: in a harmonic potential particles build a synchronous cluster 
, in this cluster the aligning force vanishes  

Regularization: the dynamics of the final cluster is Hamiltonian quasiperiodic

·xk = V cos θk
·yk = V sin θk

·θk = (ϵFy − ∂yU( ⃗rk))cos θk − (ϵFx − ∂xU( ⃗rk))sin θk Fx =
N

∑
1

cos θk, Fy =
N

∑
1

sin θk

x1 = … = xN, y1 = … = yN, θ1 = … = θN



Alignment: movie
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Time-dependent potential and phase volume conservation
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I cannot extend the Hamilton function   to a 

time-dependent potential . Thus, another approach is used - calculation of the 
phase volume evolution in the full equations  

 

The divergence rate  is  

 

For a time-independent potential the average divergence rate vanishes 

H(x, y, px, py) = V p2
x + p2

y − exp [−
U(x, y)

V2 ] = 0

U(x, y, t)

dx
dt

= V cos θ
dy
dt

= V sin θ

dθ
dt

=
1
V (−∂yU cos θ + ∂xU sin θ)

α

α(t) = W−1 dW
dt

= ∂x
·x + ∂y

·y + ∂θ
·θ = V−2(Uy

·y + Ux
·x) = V−2 ( dU

dt
−

∂U
∂t )

⟨α(t)⟩T =
1
T ∫

T

0
α(t′ )dt′ =

UT − U0

V2T
→

T→∞
0



Time-dependent potential and phase volume conservation
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The divergence rate  is   

For a time-dependent potential the average divergence rate not necesseraly vanishes 
Example: breathing potential 

 

α α(t) = V−2 ( dU
dt

−
∂U
∂t )

U(x, y, t) =
a(1 + Γ cos(ωt))x2 + b(1 + Γ sin(ωt))y2

2



Interacting particles
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I cannot write a Hamiltonian formulation for particles interacting with some potential 
, but one can check the phase volume conservation 

 

In general, masses  and velocities  for two particles are different and the phase volume 
divergence is 

 

U( ⃗r1, ⃗r2) ·x1,2 = V1,2 cos θ1,2 ,
·y1,2 = V1,2 sin θ1,2 ,

·θ1,2 =
1

M1,2V1,2 (−
∂U

∂y1,2
cos θ1,2 +

∂U
∂x1,2

sin θ1,2) .

M V

α(t) = ∑
m=1,2 ( ∂ ·xm

∂xm
+

∂ ·ym

∂ym
+

∂ ·θm

∂θm ) = ∑
m=1,2

(MmV2
m)−1( ·xm

∂U
∂xm

+ ·ym
∂U
∂ym )



Identical and non-identical interacting particles
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If particles are identical, then the divergence rate is the total derivative of the potential 

 and on a long term, the phase volume is conserved on average 

If the particles are different , the phase volume is not conserved 

α(t) = ∑
m=1,2 ( ∂ ·xm

∂xm
+

∂ ·ym

∂ym
+

∂ ·θm

∂θm ) = ∑
m=1,2

(MmV2
m)−1( ·xm

∂U
∂xm

+ ·ym
∂U
∂ym )

α(t) = (MV2)−1 dU
dt

M1V2
1 ≠ M2V2

2



Many non-identical interacting particles are dissipative
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We simulated several particles 
interacting via a smooth repulsing 
potential 

 

in a harmonic confining potential 

Uij(R) = {D | (R/σ)2 − 1 |7 R < σ ,
0 R ≥ σ ,



Conservative vs dissipative dynamics
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Classical  particles 

Overactive particle ina time-
independent potential 

Synchronized cluster of 
aligned particles  

Interacting identical 
overactive particles 

Active particles 

Alignment of many overactive 
particles 

Particle in a time-dependent 
potential 

Interacting non-identical 
overactive particles 


