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It is shown that nonlinear global models identified from a single time series can be used to
reproduce the same sequence of bifurcations of the original system. This has been observed
for simulated and real data and for both difference equation and differential equation models,
thus suggesting some generality. The results reported in this paper are of a practical character
and seem to have some bearing not only on the important subject of estimating bifurcation
diagrams from data, but also in model validation problems since some models can reproduce the
bifurcation sequence of a system even when such models do not settle to the original attractor
at first. In this case, models which would be dismissed are shown to display consistent dynamic
information about the original system, as illustrated by a simulated and a real data example.
An additional example that uses real data is provided in which the original bifurcation sequence
is recovered by the addition of multiplicative noise with increasing variance.

1. Introduction

The growing interest for nonlinear systems has mo-
tivated the development of techniques for nonlinear
mathematical model building. To this end there
are several representations from which to choose
[Aguirre, 2000]. Broadly speaking, most techniques
can be classified into two large groups, namely those
that result in discrete-time models and those that
result in continuous-time models. Nonlinear auto-
regressive moving average models with exogenous
inputs (NARMAX) are an example of the former
type [Leontaritis & Billings, 1985], whereas a set
of differential equations is a typical example of the
latter [Gouesbet & Letellier, 1994]. These two rep-
resentations will be considered in this paper.

A related problem that has been addressed re-
cently is that of reconstructing bifurcation diagrams

from data [Rico-Martinez et al., 1992; Le Sceller
et al., 1996; Bagarinao et al., 1999]. The objective

is to obtain a mathematical model that produces
a qualitatively similar bifurcation diagram to that

of the system from which the data were obtained.

Bagarinao and co-workers have derived a system-
atic two-step procedure for this [Bagarinao et al.,

1999]. First they assume K time series are mea-
sured at different parameter values of a dynamical

system and fit K nonlinear models, with the same
structure, to such data. In the second step, they pa-

rameterize the region occupied by the K parameter

vectors using principal component analysis (PCA)
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taking only the significant components. In this way
they relate the model parameters (usually many) to
a few (active) bifurcation parameters.

The main objective of this paper is to report
that bifurcation diagrams that are qualitatively
similar to that of the original system can be ob-
tained from models identified from a single time se-
ries by varying one of the model parameters. Such
results are interesting in several ways. First, it is
shown that in many cases the bifurcation sequence
of the original system can be retrieved using a model
obtained from a single time series. Second, such
a bifurcation sequence can be obtained by directly
varying one of the model parameters without requir-
ing any further parametrization. In this respect,
however, a practical difficulty arises, namely the se-
lection of a model parameter to be varied as a bifur-
cation parameter. Guidelines to aid in this choice in
the case of continuous-time and discrete-time mod-
els are provided and illustrated with simulated and
real data. Also, the results presented in this paper
are especially relevant in global model validation
problems, as will be argued.

In the investigation of the aforementioned prob-
lem, models derived for simulated and real nonlin-
ear systems are analyzed. In order to have an im-
pression of how general the observed scenario is, two
very different modeling techniques were used. Such
are briefly reviewed in Sec. 2. Section 3 presents
the numerical examples. Section 4 discusses the
main points of the paper and in the Appendix a
real data example is provided in which the original
bifurcation sequence is recovered by the addition of
multiplicative noise with increasing variance.

2. Two Modeling Techniques

Consider a continuous-time dynamical system de-
scribed by a set of ordinary differential equations

ẋ = f(x; µ) , (1)

where x(t) ∈ Rn is the state vector that depends
on a parameter t called the time and f , the so-
called vector field, is an n-component smooth func-
tion generating a flow φt. Also, µ ∈ Rp is the pa-
rameter vector with p components, assumed to be
constant in this work.

It is assumed that a single variable is measured,
and it is desired to obtain a dynamical model, from
that single time series and with no prior knowledge,
that will represent the original dynamics in some

sense. In the remainder of this session, two differ-
ent model representations will be described. Such
representations will be used on simulated and real
data to illustrate the main ideas of this work.

2.1. Discrete-time polynomials

Here it is considered that the measured time series
is y(k) = h(x(kTs)), k = 0, 1, . . . and where Ts is
the sampling time. In many cases, the time evo-
lution of the observed y(k) can be described by a
nonlinear autoregressive moving average (NARMA)
model [Leontaritis & Billings, 1985] of the form

y(k) = F `[y(k − 1), . . . , y(k − ny), e(k), . . . ,
e(k − ne)] , (2)

where ny and ne are the maximum lags considered
for the process and noise terms, respectively. More-
over, y(k) is the output time series and e(k) ac-
counts for uncertainties, possible noise, unmodeled
dynamics. F `[·] is some nonlinear function of y(k)
and e(k).

In this paper, the map F `[·] is a polynomial of
degree ` ∈ Z+. In order to estimate the parameters
of this map, Eq. (2) can be expressed as:

y(k) = ψ(k − 1)Tθ̂ + ξ(k) , (3)

where ξ(k) are the identification residuals. More-
over, ψ(k − 1) is a vector which contains output
and residual terms up to and including time k − 1,
and θ̂ is the estimated parameter vector obtained
by minimizing the following cost function [Chen
et al., 1989]:

JN (θ̂) =
1

N

N∑
k=1

ξ2(k, θ̂) . (4)

The variance of the parameter vector estimated by
least squares is:

var(θ̂LS) = σ2
e [Ψ

TΨ]−1 , (5)

where σ2
e is the variance of the white noise that

corrupts the data and Ψ is the regressor matrix ob-
tained by taking ψ(k−1)T over the data records. In
practice, σ2

e is approximated by the variance of the
residuals ξ(k). As can be seen in Eq. (5), the vari-
ance of any least squares estimate will be inversely
proportional to the signal/noise ratio of the data.
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Parameter estimation is usually performed for
a linear-in-the-parameters orthogonal model which
is closely related to (3) and which is represented as:

y(k) =

np+nξ∑
i=1

giwi(k) + ξ(k) , (6)

where np + nξ is the number of (process plus

noise) terms in the model, {gi}
np+nξ
i=1 are parame-

ters and the monomials {wi(k)}
np+nξ
i=1 are orthogo-

nal over the data records. Finally, parameters of
the model in Eq. (3) can be calculated from the

{gi}
np+nξ
i=1 . This procedure has two major advan-

tages, viz. (i) reduces inaccuracies due to numerical
ill-conditioning; (ii) aids in selecting the structure
of the final model.

A criterion for selecting the most important
terms in the model can be devised as a by-
product of the orthogonal parameter estimation
procedure. The reduction in the mean square pre-
diction error (MSPE) due to the inclusion of the ith
term, giwi(k), in the auxiliary model of Eq. (6) is

(1/N)g2
i w

2
i (k). Expressing this reduction in terms

of the total MSPE yields the error reduction ratio
(ERR):

[ERR]i
.
=
g2
iw

2
i (k)

y2(k)
, i = 1, 2, . . . , np + nξ . (7)

Hence those terms with large values of ERR are
selected to form the model.

2.2. Continuous-time polynomials

In this approach it is assumed that a single scalar
time series, X1 = x = h(x), is recorded, where, as
before, h(·) is a measurement function. The aim is
then to obtain a vector field equivalent to the origi-
nal system using a basis consisting of the observable
and its derivatives such as

Ẋ1 =X2; Ẋ2 =X3; . . . Ẋde =F (X1, X2, . . . ,Xde),

(8)

where de is the embedding dimension and F de-
pends on de variables which are x and the de−1 suc-
cessive derivatives of x. F can be estimated by using
a multivariate polynomial basis on nets [Gouesbet
& Letellier, 1994]. The algorithm requires the defi-
nition of modeling parameters which are:

1. de, the embedding dimension,

2. Nc, the number of centers at which the function
is evaluated,

3. ∆t, the time step between two successive cen-
ters. In this work ∆t is constant, but this is not
a requirement,

4. Np, the number of retained multinomials, and
5. τw, the window length on which the derivatives

are computed by using polynomial interpolation
over the window.

Derivatives are then obtained by analytically
derivating such polynomials. The estimated func-
tion, F̂ , then reads as

F̂ (X1, X2, . . . , Xde) =

Np∑
p=1

θpψ
p , (9)

where θp are the parameters and ψp are multivariate
monomials (or multinomials) of the form

ψp = Xn1
1 Xn2

2 · · ·X
nde
de

, (10)

where the integers p are related to nde-uplets
(n1, n2, . . . , nde) by a bijective relationship dis-
cussed in [Gouesbet & Letellier, 1994]. The model-
ing parameters de, Nc, ∆t, Np and τw can be deter-
mined with the aid of an error function described
in [Le Sceller et al., 1996]. The model (9) is based
on a differential embedding.

Writing (9) at Nc centers on the data yields a
set of Nc equations of the form


Ẋde(1)

...

Ẋde(Nc)

=


ψr1(1) · · · ψrnp(1)

...
...

ψr1(Nc) · · · ψrnp(Nc)



θr1
...

θrnp

 ,
(11)

where ri 6= rj and 1 ≤ r1 . . . rnp ≤ Np and
the numbers inside the parentheses indicate to
which center the variable is related. Once the
model structure is determined the parameter vector
[θ̂r1 . . . θ̂rnp ]

T can be estimated by standard least
squares techniques.

3. Bifurcations of Identified Models

This section presents a couple of examples in which
identified models are used to produce a bifurca-
tion sequence equivalent to that of the original
systems.
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(c) period-8
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(e) Chaotic
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(f) From original data

Fig. 1. (a–e) are attractors produced by a perturbed model obtained using (Nc, Npp, Np) = (57, 8, 20) and setting θ19 =
θ20 = 0.0. The period-doubling cascade observed when the coefficient θ11 is increased is analogous to the period-doubling
cascade of the original Burke’n Shaw system. (a) θ11 = 80, (b) θ11 = 100, (c) θ11 = 135, (d) θ11 = 136, (e) θ11 = 151 (notice
that scale is slightly different), (f) attractor reconstructed from data.
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3.1. The Burke’n Shaw system

Consider the Burke’n Shaw system
ẋ = −S(y + x)

ẏ = −Sxz − y
ż = Syx+ V,

(12)

with (S, V ) = (10.0, 3.811) which generates a
chaotic behavior as seen in Fig. 1(f). The integra-
tion step was δt = 2×10−3 s. The following model-
ing parameters were used in this example: degree of
nonlinearity equal to 3, number of terms Np = 20,
embedding dimension de = 3, time step between
two successive centers ∆t = 16× 10−3 (correspond-
ing to Npp = 8) and Nc between 55 and 60. Only
limit cycles as shown in Fig. 1(b) were obtained
from the estimated models.

During the search for models, most coefficients
θp significantly change when Nc is increased. But
is has been noted that θ19 and θ20 are always
very small. These parameters happen to be ir-
relevant and can be deleted. On the other hand,

θ11, the parameter of X3, remains almost con-
stant (see Table 1). The consistency of θ11 is an
indication that such a parameter (and the corre-
sponding term X3 also) is somewhat fundamental
in the model. This motivates the choice of θ11 as a
parameter to be changed in order to perturb the
model. In fact, varying θ11 induces the bifurca-
tion sequence shown in Fig. 1. In particular, for
θ11 = 80 [Fig. 1(a)] a period-2 limit cycle is, ob-
tained, for θ11 = 100 [Fig. 1(b)] a period-4, for
θ11 = 135 [Fig. 1(c)] a period-8 and, finally, for
θ11 = 141 [Fig. 1(d)] a period-16. This parame-
ter controls a period-doubling bifurcation cascade
leading to chaos [Fig. 1(e)] for θ = 151. The model
diverges when θ11 is increased beyond 151.50. It
is noted that perturbations in other parameters
resulted in unstable models.

This example started with data taken from the
chaotic attractor shown in Fig. 1(f). After a sys-
tematic search for models, the best model gener-
ated the period-four limit cycle similar to the one
shown in Fig. 1(b). Of course, this attractor is quite

Table 1. Coefficients of the models for two different values of Nc. Most coefficients
significantly change except θ11 which is almost constant. Also remark that the last
two coefficients have very small values. These coefficients were deleted from the
perturbed model in which θ11 was used as a bifurcation parameter.

θp

p (Nc, Npp, Np) = (57, 8, 20) (Nc, Npp, Np) = (58, 8, 20) (n1, n2, n3)

1 98.326134176008 103.02285047560 0 0 0

2 −1427.9409152157 −1443.6166825827 1 0 0

3 −56.181408873324 −56.844200088367 0 1 0

4 −22.232022492197 −22.372048961485 0 0 1

5 501.52403460705 467.71075686050 2 0 0

6 403.57658006053 407.96604131899 1 1 0

7 7.4584153697660 7.4123180422492 1 0 1

8 6.5153053496969 6.3478895134472 0 2 0

9 0.13604832401699 0.16301652021131 0 1 1

10 −0.049159391759640 −0.042693351871938 0 0 2

11 104.70788950540 104.03675580967 3 0 0

12 −180.48678800329 −171.04092181341 2 1 0

13 6.4361846245595 5.7076855194178 2 0 1

14 −0.72664566763736 −0.75847675787585 1 2 0

15 0.34761225763095 0.28768076093647 1 1 1

16 0.0062514963734994 0.0045001659682714 1 0 2

17 0.092721813118938 0.089834581471049 0 3 0

18 −0.013480909352725 −0.010757271661776 0 2 1

19 0.00046360740432311 0.00037352780786374 0 1 2

20 0.000014680824758598 0.000011320664942690 0 0 3
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Fig. 2. Chua’s circuit.

different from the original one and the model shown
in Table 1 could be easily dismissed as invalid.
However, a perturbation of this model produces a
chaotic attractor that is quite close to the original
one, as can be seen in Fig. 1(e). In addition to that,
varying a parameter results in a period-doubling
cascade to chaos, just like for the original system
when parameter V is varied. In the present exam-
ple, the parameter to vary was chosen as the one
with greatest consistency, in the sense that such a
parameter is less sensitive to variations in the mod-
eling parameter Nc. Finally, it should be pointed
out that in the present example the estimated value
of θ11 had to be varied around 50% in order to get
a chaotic attractor close to the original one. The
next example considers a case in which the vari-
ations are quite small (around 3%) and variations
within plus and minus one standard deviation of the
estimated parameter suffice to reproduce the entire
bifurcation sequence.

A quite surprising example is presented in
the Appendix. A continuous-time model esti-
mated from a single time series recorded from cop-
per electro-dissolution in phosphoric acid [Letellier
et al., 1995a] has been perturbed with multipli-

cative noise. The variance of this noise can be
taken as a bifurcation parameter which allows to
reproduce the bifurcation diagram observed in the
experiments.

3.2. Chua’s circuit

An identification data set on the double scroll at-
tractor of Chua’s circuit, shown in Fig. 2 [Chua &
Hasler, 1993], was measured using an 8-bit A/D
converter with sampling time Ts = 12 µs. The sig-
nal/noise ratio (SNR = 20 log(σ2

y/σ
2
e)) estimated

from these data was 47.51 dB. The relatively low
resolution used generated high digitalization errors
which appear as additive noise to the identification
algorithms. Low signal/noise ratios hamper both
model structure selection and parameter estima-
tion. In fact, the ERR criterion does select inade-
quate structures from noisy data but this mismatch
can be avoided using cluster analysis [Aguirre et al.,
1997]. Besides, as seen in Sec. 2.1, the variance of
model parameters depends directly on the variance
of the noise that corrupts the identification data.

It is desired to investigate the bifurcation se-
quence presented by a NARMA model identified
from real data on the double scroll attractor. In
the first stage, the focus will be the bifurcations
caused by variations in the model parameter of the
linear term with highest ERR, â1. In the second
stage, the model bifurcations are induced by vari-
ations in the parameter which multiplies the cubic
term with highest ERR, â3. The motivation for
varying such parameters comes from the definition
of the ERR criterion. According to ERR, such pa-
rameters correspond to the most important linear
and cubic terms, respectively.

Consider the monovariable NARMA model
which was identified from data on the double scroll
attractor. The model terms appear in decreasing
values of ERR

y(k) = 1.3902y(k − 1)− 0.6483y(k − 4)− 1891.2489y(k − 1)y(k − 5)y(k − 6)

+ 4628.2549y(k − 2)y(k − 4)y(k − 6) + 0.6199y(k − 6) + 0.3634y(k − 2)

− 0.2903y(k − 3)− 2415.2616y(k − 3)y(k − 4)y(k − 5)− 0.3988y(k − 5)

− 527.2104y(k − 1)3 − 2915.2755y(k − 6)3 + 6979.7872y(k − 4)y(k − 6)2

+ 921.1841y(k − 1)y(k − 2)y(k − 3) + 50.8122y(k − 5)y(k − 6)2

− 1932.6477y(k − 2)2y(k − 6)− 4953.4587y(k − 4)2y(k − 6)

− 1869.3976y(k − 2)y(k − 6)2 + 2054.9849y(k − 1)y(k − 4)y(k − 5)

+ 2250.7216y(k − 3)y(k − 5)y(k − 6)− 558.6647y(k − 1)y(k − 6)2 . (13)



Induced One-Parameter Bifurcations 141

Table 2. Dynamical regimes obtained varying model
(13) parameters â1 and â3 one at a time. While vary-
ing one parameter the other one was fixed at the value
shown in model (13). ã1 and ã3 indicate the specific val-
ues considered.

Dynamical Regime ã1 ã3

Stable nontrivial fixed point 1.3662 −1.7936 × 103

Period one limit cycle 1.3902 −1.8912 × 103

Period two limit cycle 1.3972 −1.9303 × 103

Period four limit cycle 1.3992 −1.9390 × 103

Spiral attractor 1.4002 −1.9465 × 103

Period three limit cycle 1.4012 −1.9516 × 103

Spiral attractor 1.4022 −1.9693 × 103

Double scroll attractor 1.4092 −2.0263 × 103

Unstable dynamics 1.4322 −2.2063 × 103

The model terms were automatically selected us-
ing the ERR criterion from a set of 84 candidate
terms formed by the union of all linear and cubic
terms. The constant and the quadratic terms were
previously excluded based on cluster and high-order
spectral analysis [Aguirre et al., 1997; Aguirre,
1997].

The least squares estimate of â1 (parameter of
the term y(k − 1)) is â1 = 1.3902 ± 0.0540. Hence,
considering a Gaussian distribution for the esti-
mates, there is 68% probability that the nominal pa-
rameter will be in the interval 1.3362 ≤ ã1 ≤ 1.4442
(assuming that the residuals are white). The vari-
ation of â1 within the cited interval generated the
new dynamical behaviors summarized in Table 2.
Such a table shows that it is possible to gener-
ate a model with chaotic dynamics via the per-
turbation of â1 within its estimation confidence in-
terval. Therefore, the identified structure is able
to reproduce the desired dynamics. An exceeding
perturbation in parameter â1 results in unstable
models. Figure 3(c) shows the chaotic attractor re-
constructed with ã1 = 1.4092. Hence all it takes
for the identified model to reproduce the original
bifurcation sequence is a small perturbation in just

one parameter (out of twenty). It is further stressed
that this information is somewhat coded into a sin-
gle time series obtained from the real circuit oper-
ating with fixed parameters and there is no need,
at least in principle, to consider a large set of time
series at different parameter values.

As mentioned earlier, parameter â3 of model
(13) (parameter which corresponds to term y(k −
1)y(k − 5)y(k − 6)) also induces a similar bifurca-
tion sequence, although the double scroll attractor
obtained in this way is visibly smaller than the orig-
inal one. This should come as no surprise since
it is known that varying different model parame-
ters can induce very similar bifurcation diagrams.
Figure 3(d) shows the chaotic attractor recon-
structed with ã3 = −2.0263×103. The least squares
estimate of this parameter is â3 = −1.8912× 103 ±
9.7600 × 102. The parameter variation within the
range −2.8672 × 103 ≤ ã3 ≤ −9.1520 × 102 gener-
ated new dynamical regimes which are presented in
Table 2 thus confirming that the same bifurcation
sequence of the original circuit is recovered.

It is worth pointing out that perturbations
in other parameters of (13) resulted in unstable
models, as for the continuous-time models. Thus,
it seems that the ERR indicates the more suit-
able parameters to be varied, for the discrete-time
models.

Table 3 presents the fixed points and estimates
of the correlation dimension, dc, and of the largest
Lyapunov exponent, λ1, for some model attrac-
tors. In the case of fixed-points, only the in-
ductor current component is shown. The correla-
tion dimension and the largest Lyapunov exponent
were estimated using the MTRCHAOS software
[Rosenstein, 1993].

As seen in Tables 2 and 3, the identified model
(13) can be used to reproduce the same sequence
of one-parameter bifurcations as the original cir-
cuit. Moreover, the attractors thus obtained re-
produce the circuit dynamical properties to some
extent. This confirms that the structure of model

Table 3. Fixed points and dynamical invariants of some modified models.

Model Fixed Point Dc λ1

Chua’s circuit (−12.30, 0, 12.30) mA 2.06 0.029

Model (13) (−14.27, 0, 14.27) mA 1 < 0

Chaotic model ã1 = 1.4092 (−17.63, 0, 17.63) mA 1.96 0.025

Chaotic model ã3 = −2.0263 × 103 (−10.75, 0, 10.75) mA 2.17 0.027
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Fig. 3. Bidimensional projection of reconstructed attractors of Chua’s circuit. (a) Identification data attractor. Note the
low signal to noise ratio due to digitalization, (b) attractor of identified model (13), (c) attractor obtained for ã1 = 1.4902.
(d) Model obtained through variation in ã3 = −2.0263 × 103.

is adequate to represent the double scroll attrac-
tor although the original estimated parameters have
fallen out of its attraction basin (see discussion
in Sec. 4).

4. Discussion and Conclusion

It has been shown that identified models obtained
from a single time series can be used to reproduce
a bifurcation sequence that is equivalent to that of
the original system by varying one of the model pa-
rameters. Hence, it is possible to reproduce dy-
namical regimes of the original system not directly
apparent in the available time series. This scenario

has been observed in a great number of simulated
and real data examples using different model rep-
resentations. For the sake of space, this paper has
reported two examples that involve simulated and
real data with continuous-time and discrete-time
model representations. This seems to support that
the observed scenario is somewhat general. Fur-
ther research is needed to better understand the
phenomena involved.

It is believed that these conclusions are not only
relevant in the important problem of reconstructing
bifurcation diagrams from data [Le Sceller et al.,
1996; Bagarinao et al., 1999] but also have a direct
bearing on the understanding of nonlinear models
and are useful in their validation.
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It very often happens, when modeling nonlinear
dynamics, the obtained model reproduces an attrac-
tor which is apparently very different from the orig-
inal one. At first sight, the only reasonable thing to
do is to reject the model during validation. How-
ever, in many instances it has been noticed that a
model that at first does not reproduce the original
attractor might have all the basic dynamical infor-
mation required. Frequently, a perturbation of such
a model will result in an attractor quite close to the
original one. Moreover, frequently the bifurcation
diagram of the model closely resembles that of the
original system. This would point to the fact that
in such cases the model that had been obtained was

in fact representative of the system and in such a
case an attractor close to the original one can be
achieved by perturbing the model.

If the model is considered as a point in param-
eter space, different regions of such a space corre-
spond to different dynamical regimes displayed by
the model with the respective parameters. Fre-
quently an insignificant variation in one or more
parameters can drastically change the dynamical
behavior of the model. In many instances, the mod-
els fall outside the parameter region correspond-
ing to the intended attractor as a consequence of
noise or slightly nonoptimal modeling parameters
such as the number of terms, embedding dimension
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Fig. 4. Different typical attractors generated by the global continuous model obtained, starting from a single scalar time
series with multiplicative noise.
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Fig. 5. Bifurcation diagram versus the amplitude of the mul-
tiplicative noise applied to the model.

and number of centers used [Letellier et al., 1995b].
This is apparently the case in many instances re-
ported in the literature which do not seem to be
fully understood, e.g. Fig. 5 of [Chon et al., 1997].
It is important to note that such models are outside
but often in a vicinity of dynamically valid models.
Therefore, a small perturbation in many cases is
sufficient to shift the model back into the desired
dynamical regime.

An open problem seems to be how to choose
which parameter to vary in order to perturb the
model when only one time series and respective
model are available. In this paper simple and effec-
tive procedures have been suggested and illustrated
for this purpose. Of course, many more can be de-
vised. For instance, principal component analysis
(PCA) can be used to define bifurcation parameters
when a set of time series and models are available
[Bagarinao et al., 1999].
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Appendix
Retrieving Bifurcation Diagrams by
Addition of Multiplicative Noise

This appendix reports a real data situation in which
by adding multiplicative noise to a continuous-time
model, the original sequence of bifurcations was re-
trieved. This seems pertinent to the topic discussed
in the paper and is presented in what follows.

The reaction here considered is the electrodis-
solution of copper in phosphoric acid [Albahadily
& Schell, 1988]. It has been observed that, af-
ter a Hopf bifurcation, the oscillatory behavior is
followed by a period-doubling cascade. Then, a
chaotic attractor is observed. The experiments gen-
erating the data here used are described in [Letellier
et al., 1995a]. A continuous model, constituted by
52 monomials, built on the derivative coordinates
has been obtained from a single time series consti-
tuted by the time evolution of the current passing
through the electrodes. This model was validated

using topological characterization and is very close
to the experimental chaotic dynamics [Letellier
et al., 1995b].

Surprisingly enough this model can be used
to generate time series which correspond to
(apparently) unobserved behavior when a multi-
plicative noise is added to it, as follows


Ẋ = Y +AεεX(t)

Ẏ = Z +AεεY (t)

Ż = F (X, Y, Z) +AεεZ(t),

(A.1)

where εi are three stochastic variables represent-
ing some independent Gaussian noise in the range
[−1.0, 1.0]. Depending on the noise gain Aε, the
model thus settles to different attractors which
are observed between the Hopf bifurcation and
the chaotic attractor corresponding to the recorded
time series. A few examples are displayed in Fig. 4.
The amplitude of the noise cannot exceed the
critical value of Aε = 0.001615 beyond which the
trajectory is ejected to infinity. The sequence of bi-
furcations versus the noise amplitude is displayed
in Fig. 5.


