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When a laser system is studied, the time evolution of the light intensity emitted by the laser
cavity is recorded. The phase portrait reconstructed from that time series never presents symme-
try although the amplitude equations always generate phase portraits with symmetry properties.
It is shown that the detuning between the normalized steady-state laser frequency and the molec-
ular resonance frequency induces a continuous rotation symmetry. This equivariant dynamics is
linked with the dynamics underlying the experimental observations of the light intensity through
a system for which the symmetry properties are modded out.
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In physics, there are many dynamical systems which
are described by amplitude equations such as those
considered in electrodynamics, quantum mechan-
ics, quantum optics or laser physics. Nevertheless,
from an experimental point of view, only intensi-
ties can be measured. An important question is,
therefore, how to link the amplitude description
with the intensity description. Indeed, most often
the amplitude equations have symmetry properties
that the intensity descriptions do not have. In fact,
an intensity description is often associated with a
phase portrait for which symmetry properties are
modded out. We say that the intensity description
is an image of the dynamics generated by the am-
plitude equation. This terminology was introduced
by [Miranda & Stone, 1993]. Such an approach has
been recently generalized to any kind of dynamical
system associated with a 3D phase space [Letellier
& Gilmore, 2001]. Since we are here concerned with
laser systems, let us start with the simple case where
the amplitude equations may be reduced to the

Lorenz system [Haken, 1975]






ẋ = −σ(x − y)

ẏ = Rx − y + xz

ż = −γz + xy

(1)

where x is the normalized electric field amplitude,
y the normalized polarization and z the normalized
inversion. R is the pumping rate, σ is the ratio of
the cavity decay rate of the field in the cavity over
the relaxation constant of the polarization and γ is
the relaxation constant of the normalized inversion.

This system is equivariant, i.e. it obeys the re-
lation Γ · f(x) = f(Γ · x) where f is the vector field
associated with the Lorenz system, x ∈ R

3(x, y, z)
is the state vector and Γ is a 3×3 matrix describing
the symmetry property. In the case of the Lorenz
system, the symmetry is a rotation around the axis
Oz. The Γ-matrix therefore is

Γ ≡





−1 0 0

0 −1 0

0 0 1



 (2)
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(b) Phase portrait

Figure 1: The x-variable of the system (1) is squared to correspond to an intensity quantity which could be measured

in a real laser system. The induced phase portrait does not present any symmetry (R = 15.0, σ = 2.0 and γ = 0.25).
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(b)

Fig. 1. The x-variable of the system (1) is squared to
correspond to an intensity quantity which could be measured
in a real laser system. The induced phase portrait does not
present any symmetry (R = 15.0, σ = 2.0 and γ = 0.25).
(a) Squared x-time series, (b) phase portrait.

For instance, when the chaotic attractor is glob-
ally symmetric as observed for R = 15.0, σ =
2.0 and γ = 0.25, this attractor is left invariant
under the coordinate transformation (x, y, z) →

(−x, −y, z). The Γ-matrix defines an order-2 sym-
metry since Γ2 = I where I is the identity
matrix.

Typically the intensity quantities behave like
the squared variable x2 or y2 of the Lorenz system
[Fig. 1(a)] [Hübner et al., 1994] When a phase por-
trait is reconstructed by using the derivative coordi-
nates, it does not present any symmetry [Fig. 1(b)]
as observed in an image of the Lorenz system
[Letellier & Gilmore, 2001]. Such a phase portrait
induced by an intensity quantity is topologically
equivalent to the phase portrait generated by the
image of the Lorenz system.

Different images may be derived from an equiv-
ariant system. For instance, in the case of an order-2

transformation consists in using the coordinate transformation (X, Y, Z) = (z, ż, z̈) (Fig. 2). In that case, there

is a local diffeomorphism between the original phase portrait embedded in R
3(x, y, z) and its image embedded in

R
3(X, Y, Z), except for a singular set associated with the rotation axis Oz. In fact, R

3(X, Y, Z) is the phase space

reconstructed from the z-time, left unchanged under the symmetry, and its successive time derivatives.
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Figure 2: Phase portrait associated with the image system built on the z-variable and its first two time derivatives.

The symmetry properties are modded out.

When the detuning δ between the normalized steady-state laser frequency and the molecular resonance frequency

(δ ∈ [0 ; 1]) is taken into account, the amplitude equations [Zeghlache & Mandel, 1985] become































































ẋ1 = −σ(x1 + δx2 − y1)

ẋ2 = −σ(x2 − δx1 − y2)

ẏ1 = Rx1 − y1 + δy2 − x1z

ẏ2 = Rx2 − δy1 − y2 − x2z

ż = −γz + x1y1 + x2y2

(3)

where R, σ and γ have the same physical meaning as in the system (1). (x1, x2) are the real and imaginary parts of the

electric field and (y1, y2) are real and imaginary parts of the amplitude of polarisation. z is the normalized inversion
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Fig. 2. Phase portrait associated with the image system
built on the z-variable and its first two time derivatives. The
symmetry properties are modded out.

rotation symmetry around the axis Oz, the coor-
dinate transformation (u, v, w) = (x2

− y2, 2xy, z)
can be used as discussed in [Miranda & Stone, 1993;
Letellier & Gilmore, 2001]. In the case discussed
later, a more convenient coordinate transforma-
tion consists of using the coordinate transforma-
tion (X, Y, Z) = (z, ż, z̈) (Fig. 2). In that case,
there is a local diffeomorphism between the original
phase portrait embedded in R

3(x, y, z) and its im-
age embedded in R

3(X, Y, Z), except for a singular
set associated with the rotation axis Oz. In fact,
R

3(X, Y, Z) is the phase space reconstructed from
the z-time, left unchanged under the symmetry, and
its successive time derivatives.

When the detuning δ between the normalized
steady-state laser frequency and the molecular res-
onance frequency (δ ∈ [0; 1]) is taken into account,
the amplitude equations [Zeghlache & Mandel,
1985] become



























ẋ1 = −σ(x1 + δx2 − y1)

ẋ2 = −σ(x2 − δx1 − y2)

ẏ1 = Rx1 − y1 + δy2 − x1z

ẏ2 = Rx2 − δy1 − y2 − x2z

ż = −γz + x1y1 + x2y2

(3)

where R, σ and γ have the same physical mean-
ing as in the system (1). (x1, x2) are the real and
imaginary parts of the electric field and (y1, y2) are
real and imaginary parts of the amplitude of po-
larization. z is the normalized inversion [Zeghlache
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& Mandel, 1985]. These amplitude equations are
equivariant under the action of the 5 × 5 matrix

Γ
(

Rz

(π

4

))

≡















0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 1















(4)

which defines a rotation symmetry. Note that the
z-variable is unchanged under the action of this
Γ-matrix which defines an order-4 discrete symme-
try, since Γ4(Rz(π/4)) = I. The system (3) has one
fixed point F0 located at the origin of the phase
space and a continuous set of fixed points defined as











x2

1
+ x2

2
= γ(R − 1 − δ2)

y2
1

+ y2
2

= (1 + δ2)γ(R − 1 − δ2)

z = R − 1 − δ2

(5)

This is in fact a circle T 2 which is globally invari-
ant under the action of the matrix Γ(Rz(π/4)). This
circle induces a continuous rotation symmetry in
the phase space R

5(x1, x2, y1, y2, z).
The rotation around the 0z axis becomes faster

when the detuning δ is increased. For instance, for
δ = 0.002, the phase portrait [Fig. 3(a)] is only
slightly flaky, since only a short term trajectory
is used. But when the Poincaré section defined by
zn = R− 1− δ2 is computed [Fig. 3(a)], it is clearly
evidenced that the phase portrait already rotates
fully around the Oz axis. A similar feature with a
faster rotation is observed with a detuning δ = 0.6
[Fig. 3(c)].

When the detuning is increased up to δ = 0.69,
a quasi-periodic motion is observed [Fig. 3(e)]. This
is a two-frequency torus. These frequencies, fx and
fy, are associated with the rotation occurring in the
planes (x1, x2) and (y1, y2), respectively. Both are
associated with a continuous rotation around the
axis Oz. Other types of quasi-periodic motions may
be observed as exemplified with δ = 1.0 [Fig. 3(g)].
Of course, the dynamical structure of these differ-
ent phase portraits is rather difficult to depict in
the phase space R

5(x1, x2, y1, y2, z).
As previously discussed, an image system will

greatly simplify the analysis by disentangling the
properties which are due to the symmetry. To mod
out the symmetry properties, the image system
induced by the z-variable and its successive time
derivatives is used. In such a case, the embedding
dimension computed with a false nearest neighbors
technique [Cao, 1997] is equal to 3. It means that

when the symmetry is modded out, the dynam-
ics can be described in a 3D phase space spanned
by the derivative coordinates (X, Y, Z) = (z, ż, z̈)
rather than in a 5D phase space. In that case, the
phase portraits are similar to those generated by
the image system of the Lorenz system (1). A first-
return map to the Poincaré section PI defined by
Xn = R − 1 − δ2 and Ẋn > 0 in the image space is
unidimensional. It is a bimodal map for δ = 0.002
[Fig. 3(b)], one critical point being a cuspide as
usually observed on the Lorenz system.

When the detuning δ is greater than 0.10, the
first-return map is only unimodal with a differen-
tiable maximum [Fig. 3(d)]. Consequently, the evo-
lution of the phase portrait generated by the image
system versus the detuning (δ ∈ [0.1; 1.0]) can be
predicted by the unimodal order derived from the
kneading theory [Collet & Eckmann, 1980]. Period-
doubling cascades and periodic-windows therefore
appear as observed for the logistic map. The quasi-
periodic regime observed for δ = 0.69 corresponds
to the period-3 limit cycle [Fig. 3(f)] of the image
system and the quasi-periodic regime observed for
δ = 1.0 is associated with the period-2 limit cycle
[Fig. 3(h)] appearing in the period-doubling cas-
cade. The quasi-periodic motions may therefore be
viewed as the topological product of limit cycles by
a continuous rotation symmetry around the z-axis.

A sequence of doublings of invariant tori is thus
observed, as theoretically described by [Arnéodo
et al., 1983]. In their case, the torus results from
a third-differential equation driven by a external
sinusoidal force for which some strong conditions
of irrationality between the frequences involved are
required to ensure the existence of quasi-periodic
behavior. A similar scenario has been observed by
[dos Santos et al., 2002] in the case of a Matsumoto–
Chua circuit driven by a external sinusoidal force.
In our case, it is a rather different configuration
since it is the continuous rotation symmetry ap-
plied to a limit cycle which produces the quasi-
periodic regime. Consequently, there is no condition
on irrationality between the frequencies involved
and these sequences of period-doublings of tori are
more robust against control parameter change.

Thus, the two-frequency torus is broken
according to the bifurcation sequences usually en-
countered on the logistic map and not to possi-
ble resonances. This is checked by computing the
bifurcation diagram versus the detuning in the
image space R

3(X, Y, Z) (Fig. 4). Note that for
δ ∈ [0.1; 1.0], this bifurcation diagram is similar
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Fig. 3. Evolution of the dynamics versus the detuning δ. The two left columns (a, c, e and g) correspond to (x1, z) plane
projections of the phase portraits embedded in the original phase space R

5 (x1, x2, , y1, y2, z) and a Poincaré section in the
plane (y1, y2), respectively. Both directions of intersections with a transverse plane are retained for these Poincaré sections.
In the Poincaré section, the dashed line represents the section of the circle of fixed points. The two right columns (b, d, f and
h) are associated with (XY ) plane projections of the phase portraits embedded in the image space R

3(X, Y, Z) and their
corresponding first-return maps to a Poincaré section, respectively. (R = 24.0, σ = 2.0, γ = 0.25.)
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Figure 3: Evolution of the dynamics versus the detuning δ. The two left columns (a, c, e and g) correspond to (x1, z)

plane projections of the phase portraits embedded in the original phase space R
5(x1, x2, y1, y2, z) and a Poincaré

section in the plane (y1, y2), respectively. Both directions of intersections with a transverse plane are retained for

these Poincaré sections. In the Poincaré section, the dashed line represents the section of the torus of fixed points.

The two right columns (b, d, f and h) are associated with (XY ) plane projections of the phase portraits embedded in

the image space R
3(X, Y, Z) and their corresponding first-return maps to a Poincaré section, respectively. (R = 24.0,

σ = 2.0, γ = 0.25).
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Figure 4: Bifurcation diagram versus the detuning δ computed in the Poincaré section PI of the image system.
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Fig. 4. Bifurcation diagram versus the detuning δ computed
in the Poincaré section PI of the image system.

to those computed for the logistic map. To each
periodic window of the image system corresponds a
quasi-periodic regime in the original phase space.

It has been shown that the dynamics underly-
ing the intensities recorded on laser experiments can
be linked with the amplitude dynamics through an
image system. Moreover, since the symmetry prop-
erties of the amplitude equations correspond to a
continuous rotation symmetry around the z axis,
the complicated dynamical structure in the origi-
nal phase space may be disentangled by using an
image system induced by the z dynamical variable
which is left unchanged by the action of the rotation
symmetry. The representation of the dynamics thus
obtained is equivalent to the phase portrait recon-
structed from the time evolution of the light inten-
sity which is usually recorded in laser experiments.
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