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Distinguishing between folding and tearing mechanisms in strange attractors
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We establish conditions for distinguishing between two topologically identical strange attractors that are
enclosed by identical bounding tori, one of which is generated by a flow restricted to that torus, the other of
which is generated by a flow in a different bounding torus and either imaged or lifted into the first bounding
torus.
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[. INTRODUCTION maps a strange attractor witR(77) symmetry to an image
) ) i strange attractor without symmetry. The two attractors are
The important properties of dynamical systems, and thggcally identical. By the inverse process, an image attractor
strange attractors they may generate, are invariant under\gthout symmetry[with variables(u,v,w)], can be “lifted”
smooth change of coordinatfs-3). These include the num- to a covering attractor with symmetrjand coordinates
ber and type of fixed points and their stability; geometric(x,y,z)].
properties, such as fractal dimension; dynamical properties, |n this work, we investigate two related questiori.
such as Lyapunov exponents; and topological propertiessuppose a covering attractdroren? is mapped to an im-
such as topological entropy and the stretching and squeezirgge, so that it looks topologically like a Rossler attractor.
mechanisms that generate strange attractors. These mecliow is it possible to distinguish this image from a Rdssler
nisms are understood iR®, where they are described by attractor?(ii) Suppose a Rossler attractor is lifted to a cov-
branched manifolds. Branched manifolds summarize the&ring attractor. How is it possible to distinguish this lift from
stretching and squeezing mechanisms that act repetitively t@n attractor generated by an equivariant set of equations?
build up strange attractors and to organize all their unstable We resolve both questions by investigating the return
periodic orbits in a unique wag4,5]. For this reason, they Maps of the attractors. These carry very clear signatures of
have been used to characterize low-dimensional strange dhe stretching and squeezing mechanisms that generate
tractors, namely those with Lyapunov dimensiyn<3 [6]. ~ ¢haos. These are the stretching and folding mechanism that
Local diffeomorphisms identifyn points (n>1) in one  occurs in Rossler-like attractors, and the stretching and tear-
phase spacfR® (covep] with a single point in another phase N9 (and sometimes foldingmechanism, which occurs when
space[R® (image] of the same dimension. Under a local & SYmmetry is present.
diffeomorphism, some of the properties of a strange attractor Our results depend on two powerful tools that are used to
are preserved and others are not. The number of fixed poinfd1aracterize strange attractors that exist in three-dimensional
typically changes, while the stability of their images cov-  SPaces. These tools are branched manifolds and bounding
ers does not; geometric properties, fractal properties, dy_ton. In _Sec. I, we review these structures and mtr_oduce their
namical properties, and topological entropy are preserved plroperties that are relevant to the content of this work. In
global topological properties are nit,s). Sec. lll, we study return maps for strange attractors gener-

Local diffeomorphisms are often related to symmetries@t€d by flows in a bounding torus of genus[4,10. For
For example, if a dynamical system RS is equivarianiun- highly dissipative dynamical systems, these look like smooth
changegl under rotations byw radians about the axis  CUrves with differentiable local extrema. In Sec. IV, we study

[R(m)], the 2—1 local diffeomorphism return maps for strange attract_ors_ generated by flows with
R,(m) symmetry. These flows exist in a torus of genus 3. The
o Poincaré section consists of two generally disjoint compo-
u=x=-y-, nents, and the return map describes how initial conditions on
each component are mapped to these comporjérit§. In
Sec. V, we compare image dynamics with dynamics in a
v =2xy, genus-1 flow. The two differ in that for one the extrema in
the return map are differentiable, for the other they are not.
In Sec. VI, we compare covering dynamics with the dynam-
ics of a typical strange attractor that can be generated in a
genus-3 bounding torus. Return maps for both exhibit dis-
identifies pairs of rotation-related points off thexis in the  continuities. They differ in that in one case the one-sided
covering phase spad@®(x,y,z) with a single point in the derivatives at the discontinuity are equal, in the other case
image phase spacB3(u,v,w) [7,8]. This transformation they are not. We summarize our results in Sec. VII.

w=z, 1
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Il. BACKGROUND on all m+1 boundaries. On the remainimg=g—m interior
holes there is an even number of singularities: 4,.6,The

The resuilts presented in this work depend on two Strucfo%al number of singularities on the surface of this gegus-

tures that have been used to describe strange attractors ﬂﬂ)%undin torus is @~1). Bounding tori have eitheg=1 or
can be generated by three-dimensional dynamical systems. g ' 9 <

These are branched manifolds and bounding tori. We sumg>3'
marize the properties of these two-dimensional objects that

are most important for the purposes of the present work. C. Branch lines in Poincaré sections
Branched manifolds organize periodic orbits that can exist
A. Branched manifolds in them in a very specific waj4—6]. So also do bounding

tori organize branched manifolds that can exist in them in a

srman and Willams{4,5) assume ihat f"(‘jf"’;’_"zz(")’ X very specific way[9,10. A bounding torus witrg=1 has

€ R, generates a strange attractor. They iden ify two poin Spoincaré surface consisting of one disk that is transverse to
x andy, in phase space if they have the same asymptotic ~ ) i ,
future underf, the flow f. The Poincaré surface for a bounding torus of

genusg= 3 consists ofg—1 disjoint disks. The locations of
these disks are severely constrained by the singularities of

the flow f on the boundary. Each branch line for a branched
wherex(0)=x andy(0)=y. This has the effect of projecting manifold contained in a genugiorus can be moved to one
the strange attractor along the stable direction onto a twoef the components of the global Poincaré surface of section.
dimensional structure called a branched manifold. This faildn the canonical projection, each component of the Poincaré
to be a manifold because of singularities intrinsic to the dy-surface appears as an interval connecting the boundary of
namics: splitting points and branch ling8]. The flow that one of them interior holes without singularities to the exte-

generates the strange attractor is projected to a semiftow  for disk boundary. We use this fact to provide a natural
the branched manifold. The Birman-Williams theorem stateg'ientation for the branch linég=1) or g-1 branch lines
that the topological organization of the unstable periodic or{9>1) for branched manifolds contained in a gemu®rus.
bits in the strange attractagenerated byf) remains un- Each branch line can be parametrized by a real number
changed under the projection to the branched manifgdsh- O0<Xx=1, with x=0 corresponding to the interior boundary
erated byf_). This means, roughly speaking, that the andx=1 corresponding to the exterior boundary. We use this

stretching and squeezing mechanisms that act repetitively iﬂr:deFr) to proylde ? natl;ral structurhe for the(jrgturn map (\j/vhen
phase space to build up the strange attracmd simulta- the Poincaré surface has more than one disconnected com-

neously organize all the unstable periodic orbits inate ponent(see Sec. Il D Suitable modifications can be made

preserved under the Birman-Williams projection. As a result,When the |nterse_ct|on,of the_ branched manifold with a com-
onent of the Poincaré section does not have the topology of

branched manifolds can be used to identify strange attractoR" | but that of & circle: for the dri

[6]. Since branched manifolds are discretely classifigbje 3” |r|13te|rva 'IIUttt %t oHa cire ,tﬁ's c()jccurs c;rt € :clven vanf

integers, strange attractors are also discretely classifiable. 9€" "0! OSClli& 0{6]. However, this does not occur for any o
the dynamical systems treated below, so these details will not

be treated here.

t—o

x~yif [x(t) - y(®)[— 0,

B. Bounding tori

Tsankov and Gilmord9,10] have shown that branched D. Structure of return maps
manifolds can be fattened up by surrounding each point in . . .
b by g each p A strange attractor contained in a genus-1 bounding torus

them by a small ball of radius. The semiflowf on the 5q 5 single disk as a Poincaré surface of section and its
branched manifold can simultaneously be extended to a floW,snched manifold has a single branch line that can be

f on this three-dimensional manifold. This three-dimensionamoved so that it lies in this disk. The return map of the
manifold is a handlebody of genus (a bounded three- pbranch line onto itself is a typical one-dimensional map, i.e.,
dimensional manifold withg nonintersecting holes drilled a logistic map for a horseshoe mechanigh, Fig. 1). To
through iy in which the branched manifold is embedded. Itscreate this return map, the branch line can be parametrized
boundary is a torus of genus The flow f is into this sur- from zero (“inside”) to one (“outside”. The x coordinate
face, and once inside this surface the flow is attracted expd0=<x=1) on this branch line is mapped to tlgecoordinate
nentially to the branched manifold. The handlebody is an(0<y=1) according to its image, under the semiflow, when
inertial manifold for the branched manifold and its boundaryit returns to the branch line.

is a trapping surface: once the flow enters, it never gets out. For more complicated attractofg=3), the return map is
Tsankov and Gilmore have also shown that it is possible tslightly more complicated. The global Poincaré surface of
provide a canonical form for the flow on the germisurface.  section consists of—1 disjoint disks. The branched mani-
The canonical form is a projection of this two-dimensionalfold for the attractor hag—1 branch lines, each of which can
surface onto a plane. In this projection, the gegu®rus  be moved into one of the disks. Tige-1 branch lines can be
appears as a disk wit interior holes. The flow is nonsin- numbered in a canonical wag0], from 1 tog-1, according
gular on the(outen disk boundary as well as om of the  to the order they are encountered following the outer disk
interior holes, and is in the same directi@g., clockwisg¢  boundary in the direction of the flow from any initial posi-
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FIG. 1. First return map for the Rdéssler attractor. Parameter
values:(a,b,c)=(0.432,2.0,4.0

tion. Theseg—1 disjoint intervals can be laid out along a
horizontal axis. A coordinatg,, 0<x,=<1, identifies an ini-
tial condition atx, on thekth branch line. A space could be
placed between each of tlge-1 horizontal intervals to em-
phasize that they are disjoint. We did not do that here in the
interest of economizing space. Initial conditions along
branch linek flow to two other branch lines that are identi-
fied by the transition matri§9,1Q] for the bounding torus. As

in the genus-1 case, the image is indicated along the vertical
axis. Images can occur ay+1 branch lines. These are ar-
ranged agy—1 vertical intervals. A space between each can
be included to emphasize that they are disjgim¢ did noj.
Under the semiflow, the source poirg first encounters
branch linej at the unique poing;=f(x,) after one(topologi-

cal) period. The return map has the structure of a set of
curves over they—1 disjoint intervals. The curve over any
one horizontal interval extends over two vertical intervals.
Thus, pointsy; may have zero, one, two, or more preimages,
and the return map(x) is not one to one. With the conven-
tions adoptedx;=0 inside of branch ling, x;=1 outside of
the same branch lingconstruction of return mapfx) for
branched manifolds contained in gergidounding tori is
canonical. Such maps are shown in Figé)23(c), 5(a),
10(b), and 11b).

ll. ROSSLER-LIKE DYNAMICS
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We begin our study by constructing a return map for th

[S)

FIG. 2. Projection of the Lorenz attractor or® the x-z plane
and (b) the x-y plane. The two components of the global Poincaré
section are shownc) Return map on the two components of the

R(:):ssler attractof11]. This is done in the usual way. The pgincaré section shows the branched manifold has four branchs.
Rossler equations

are

integrated for

X=-y-z,

y=x+ay,

Zz=b+z(x-c),

control

parameter

2

valuds, b, c)

Tearing occurs. Parameter valuéR; o,b)=(28.0,10.08/3).

unstable focus near the origimith x>0 are recorded and
used to create a first return mgp, versusy;. This return
map is shown in Fig. 1. The return map looks like a smooth,
differentiable curve[6]. In fact, it has such an appearance
because the Rossler attractor is highly dissipative. More gen-
erally, such a return plot would exhibit some fuzziness since
the attractor is fractal. If the strange attractor is first projected

=(0.432,2.0,4.p to generate a strange attractor. Interseconto a branched manifold and the intersection of this

tionsy; with they-z plane througlx; (the x coordinate of the

branched manifold with the Poincaré section were used to
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Er T U prorTrree U ] The return map shown in Fig. 1 has a quadratic maxi-
: 1 mum. This occurs because as the flow spirals outward from
the unstable focus near the origin, it must decelerate before
being reinjected towards the unstable focus. In fact, this is a
common property of all strange attractors contained in a
bounding torus of genus 1 that are generated by smooth
flows [9,10]. Each monotonic component of the return map
can be identified with a branch of the characterizing
branched manifold, and all monotonic segments are sepa-
rated by a local maximum or minimum that is smooth, dif-
ferentiable, and generically quadratic. Deceleration is re-
sponsible for horizontal tangents at extrema.

The mechanism responsible for creating chaos in the
Rdssler dynamical system and all similar dynamical systems
(smooth forcing terms, strange attractor contained in a
genus-1 torusis stretching and folding. Differentiability of
the return map at its critical points is the fingerprint charac-
terizing folding.

IV. LORENZ-LIKE DYNAMICS
The Lorenz equationgl2]

X=—0oX+ay,
y=RXx-y-xz,
z=-bz+xy, (3)

were integrated for several different parameter values. Fig-
| ures 2a) and 2b) show projections of the Lorenz attractor
generated with parameter valu€R, o,b)=(28.0,10.08/3)
onto thex-z and thex-y planes. This attractor can be con-
’ tained in a bounding torus of genus[9,10]. The three
(=genus holes surround the two foci and the saddle at the
origin. The global Poincaré section consists of two discon-
ps T nected components. Both are shown in these figures. Figure
2(c) shows a return mapping of the Poincaré section to itself.
The orientation of the two branch lines has been chosen in
L the natural way described in Sec. II: from insideft) to

4 outside(right). This return map shows that some of the initial

conditions along the component of the Poincaré section near
the focus on the leffL) return to the neighborhood df
(©) Y (panelL-L), while initial conditions further away from this
" fixed point flow fromL to R (panelL-R). Similar remarks

FIG. 3. Projection of the Lorenz attractor or@@ the x-z plane ~ hold, by symmetry, for flows originating on the component
and (b) the x-y plane. The two components of the global Poincaré¢Of the Poincaré section near the right-hand foBuShe dis-
section are showr(c) Return map on the two components of the continuity in the flow fromL (andR) is the fingerprint for the
Poincaré section shows the branched manifold has six branchestretching and tearing mechanism. In this case, the flow from
Tearing and folding occur. Parameter valuegR,o,b) L accelerates away from, and as it nears the origin, it is
=(65.584,13.0,2.4167 split into a part that returns th and a part that flows to a

different component of the Poincaré section. The origin
serves as a splitting singularity. The branched manifold for
this attractor has four branches, one each describing the
create a first return map, the result would rigorously be dlows fromL—L, L—R, R—L, R—R. Acceleration is re-
smooth, differentiable curve. Here and below we use the responsible for nonhorizontal tangents at extrema.
turn map for an attractor in place of a return map for the Figure 3 is similar to Fig. 2, but for the Lorenz attractor
branched manifold since there is almost no observable difgenerated for control parameter valuegR,o,b)
ference between the two in the cases that we study. =(65.584,13.0,2.4167 The return map on the two compo-
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FIG. 4. Projection of the Lorenz attractor orn(@® the x-z plane
and (b) the xy plane. Parameter values:(R,o,b)
=(278.56,30.0,1.0

FIG. 5. First return maps for the Lorenz attractor shown in Fig.
4(a). The map onto the two componeritsand R shows that one
component suffices(b) The return map on a single component

) ; o o ) shows that stretching and folding is the operative mechanism. Both
nents of the Poincaré section is shown in Figc)3In this  maps show the flow has four branches.

case there is a discontinuity. It appears as the jump frdm

R and the jump fronR to L. Folding also occurs—it appears

in the off-diagonal panel&-R and R-L in the return map. V- IMAGE DYNAMICS

This return map shows clearly that the strange attractor, for The transformation(1l) can be used to map an attractor

these parameter values, is generated by both tearing and folakth rotation symmetryR,(7)] to an image attractor without

ing mechanisms. symmetry. The Lorenz attractors shown in Figs. 2—4 were
Figure 4 showsx-z and x-y projections of the Lorenz mapped to their 21 images using this 2: 1 local diffeo-

attractor generated for control parameter valiBso,b)  morphism. The image attractors are shown in Figa)-&(a).

=(278.56,30.0,1.)0 The first return map can be taken in two Each attractor is enclosed in a genus-1 bounding torus, so

ways. If we use two disjoint components for a Poincaré secthat the global Poincaré surface of section consists of a single

tion, as in the case shown in Fig. 2, the return map is asonnected component. This component is shown explicitly in

shown in Fig. %a). All initial conditions originating onL each of the Figs. @—8(a). The first return map of this

flow to R, and vice versa. This is a clear signature that one oPoincaré section onto itself is shown in Figgbe-8(b).

the two components of the Poincaré section is superfluoud.hese three return maps differ in significant ways.

This is the case since the strange attractor can be enclosed in The return map shown in Fig.(® shows two branches

a bounding torus of genus 1. This can clearly be seen in Figgeparated by a nondifferentiable extremum. This is a clear

4(b). A single componenteitherL or R) suffices. The first signature that tearing occurs in the cover. The dynamical

return map on this single component is shown in Fidn)5 system in Fig. 6) is the image of a dynamical system in

All extrema are differentiable, clearly indicating that this at- which tearing is responsible for generating chaotic behavior.

tractor is generated by folding, not tearing. The nondifferentiability of the return map at the local maxi-
As we vary the control parameter values in the Lorenzmum is due to the cover singularity which has been mapped

attractor, we see that there is a transition in the mechanisiimto the flow of the image.

that generates the strange attractor: from tearing alBite The return map shown in Fig(ly) shows three branches.

2), to tearing and foldingFig. 3), to folding alone(Fig. 4). The three are separated by a nondifferentiable maximum and
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FIG. 6. (a) Projection of the 2> 1 image of the Lorenz attractor FIG. 7. (a) Projection of the 2>1 image of the Lorenz attractor
onto thev-w plane. The global Poincaré sectiqn ha§ only_ the ONnto thev-w plane. The global Poincaré section has only the one
component shown. First-return map on the Poincaré section ShOWs, 115nent shown. First-return map on the Poincaré section shows
the branched manifold has two branches. The retumn map is NQhe pranched manifold has three branches. The return map is not
differentiable everywhere, showing this is the image of a stranGgjiterentiable everywhere, showing this is the image of a strange
attractor where tearing occurs. Parameter valué®;o.b)  auractor where tearing occurs. The differentiable minimum shows
=(28.0,10.08/3. that folding also occurs in the covering attractor. Parameter values:

(R,0,b)=(65.584,13,2.4167
a differentiable minimum. The maximum shows that tearing
occurs in the cover, while the differentiable minimum shows
that folding also occurs in the cover. 30.0,1.0. The results are simply presented by displaying the

Finally, the return map shown in Fig.(t® shows two  pjfurcation diagram for the 2- 1 images of these equivariant
tor is generated by folding alone. It is not possible, in thisihree distinct regimes of behavior. Tearing occurs fder 1
case, to claim that this is the image of a covering attractorg g folding occurs for 0.15 p. Both occur in the common
since there is no evidence of tearing in this return map. range 0.15<p<1. The image branched manifold exhibits

Bifurcation diagrams are simple to compute for simpleyq " three, and two branches in these three regions, respec-
systems and more complicated to compute for more compleﬁve|y_ The covers have twice as many branches.

systemggenus>1). We compute the bifurcation diagram for =~ The image of a symmetric attractor can sometimes be
the Lorenz attractor as the control parameters are changegleated without explicitly constructing a local diffeomor-
according to phism. This occurs when a strange attractor is constructed by

R=Ry+ p(R,— Ry), embedding a nongeneric observable of the symmetric attrac-
tor. As a particular example, when tkevariable of the Lo-
renz system is used to construct a strange attractor using any
kind of embedding, the resulting strange attractor is enclosed

b= by + p(b;  by) () ina genus-; bopn;jing torus and sho_vvs f_olding. Howe.ver, its

0™ %1~ e return map is similar to that shown in Fig($, clearly in-

wherep is varied between 0 and 1.3. The parameter triplelicating that the fundamental mechanism generating chaos is
are (R,o0,b);=(28.0,10.08/3) and (R,o,b);=(278.56, tearing.

o =0+ p(og— 09),
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FIG. 8. (a) Projection of the 2> 1 image of the Lorenz attractor (b) N §

onto thev-w plane. The global Poincaré section has only the one

component shown. First-return map on the Poincaré section shows FIG. 10. (a) This double cover of the Résler attractor can be
the branched manifold has two branches. The return map is differenclosed in a genus-3 bounding torus. The Poincaré section has two
entiable everywhere, showing this is a strange attractor where foldccomponents(b) First-return map on the Poincaré section has four
ing occurs. Parameter valug®, o,b)=(278.56,30.0,1.0 panels. The discontinuity in the return map shows that this strange
attractor is generated by stretching and tearing. The equality of the
slopes at the discontinuity shows that it is the symmetric lift of a

) . - strange attractor generated in a bounding torus of genus 1 and that
Just as covering attractors can be projected to their imaggge two components of the Poincaré section are related by this sym-

using Eqs(1) (or an analog for other symmeiryimage at-  metry. This strange attractor is described by a branched manifold

tractors can be lifted to covers using the inverse mappingyith four branches. Parameter valués;b,c)=(0.432,2.0,4.0
For example, using Eq¢l) backwards, the Rossler attractor
can be lifted to a double cover. In fact, it can be lifted to

many topologically inequivalent double covef8]. A se-
quence of three double covers of the Rdssler attractor is
shown in Figs. 1(8—12(a). These covers are all invariant
under rotation®R,(m) about thez axis. They differ from each
other in the location of the rotation axis.

The cover shown in Fig. 18) is created from the Rossler
attractor by inserting the rotation axis in the flow. Specifi-
cally, it is inserted in the “gap” between branches 0 and 1 in
the Rossler attractor. With this nongeneric position of zhe
axis, the return map shown in Fig. ) exhibits a jump at
the point of horizontal tangency. ThB, () equivariant
double cover shown in Fig. 14) is constructed by inserting
thez axis somewhere in the orientation preservi@igbranch

0.73 125 of the Rossler attractor. In this case the jump from compo-
P nentL to R in the Poincaré section splits branch 0. The

FIG. 9. Bifurcation diagram for the image of the Lorenz attrac- one-sided derivatives at the discontinuity are equal. This is

tor, with || plotted as a function of. the signature that the cover is the lift of a strange attractor.

VI. COVER DYNAMICS

)
;
=

=
.
gt

Tearing + Folding
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FIG. 11. (a) Another double cover of the Rosler attractor. This
can also be enclosed in a genus-3 bounding tak)sThe discon- FIG. 12. () One double cover of the Rdssler attractor that can
tinuity in the return map shows that this strange attractor is genefpe enclosed in a genus-1 bounding torus. The Poincaré section has
ateq by stretching and tearing. The _dlfferentlable maxima shpw the_g1 single componentb) First-return map on the Poincaré section.
folding also takes place. The equality of the slopes at the discontiThis strange attractor is generated by stretching and folding, and is

nuity shows that it is the symmetric lift of a strange attractor gen-gescribed by a branched manifold with four branches. Parameter
erated in a bounding torus of genus 1. This strange attractor igajyes:(a,b,c)=(0.432,2.0,4.0

described by a branched manifold with six branches. Parameter

values:(a,b,c)=(0.432,2.0,4.0 VII. SUMMARY

The two one-sided derivatives at the jump shown in the re- We have described the fingerprints that can be used to
turn map of Fig. 1(b) are also equal, both equal to zero in identify the origin of low dimensional strange attractors
that case. The two covers, shown in Figs(@l@nd 11a), are  when they are mapped among themselves by local diffeo-
both enclosed by genus-3 bounding tori. morphisms. These fingerprints were explained in terms of
The equality of the one-sided derivatives on either side okxamples using the Rdssler and the Lorenz attractors and
the jump discontinuity comes about because of the symmetrgimple symmetry groups, but the results are independent of
of the cover. If the symmetry is broken, the one-sided derivathe particular dynamical system and the symmetry group
tives are not necessarily equal but the jump discontinuityused to create the local diffeomorphism. It is assumed that
which is a signature of tearing, will remain. the source terms for the dynamical systems are smooth.
The double cover shown in Fig. (8 is created by insert- We can distinguish between the image of an attractor en-
ing the symmetry axis inside the “hole” in the Rossler attrac-closed in a genug-bounding torugg=3) and an attractor
tor. This cover has topological indexg,n;)=(1,1) [8]. It  generated by smooth forcing terms in a genus-1 attractor by
can be enclosed in a genus-1 bounding torus. The globdhe degree of smoothness of the first return map. If the map
Poincaré section has a single connected component. This is not differentiable at some extremum, it is an image.
shown in Fig. 12a). The return map on this component is  Covers that can be enclosed in a gegussunding torus
shown in Fig. 12b). This shows four branches separated byare described by their return maps on a global Poincaré sec-
three quadratic extrema. This strange attractor is created Hion. The section has exactty-1 components, usually dis-
the stretching and squeezing mechanism. From this returjoint [9,10]. Discontinuities show where tearing takes place.
map, it is not possible to infer that this strange attractor is thdearing is due to the presence of saddle splitting points. Dif-
lift of an image attractor, as no discontinuities are present. ferentiable maxima show that folding also takes place.
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