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Introduction

Introduction

Chaos in Human Gait: Human gait is inherently complex and
exhibits chaotic behavior, characterized by sensitivity to initial
conditions and unpredictability.

Fractional Derivatives: Fractional calculus, allowing derivatives of
non-integer orders, is utilized to model complex gait dynamics,
considering memory effects and long-range dependence.

Fractional Rössler Oscillator: The Rössler oscillator, renowned for
its complex dynamics, is extended using fractional derivatives, adding
insight into chaotic behavior within the context of human gait
analysis.

Applications in Exoskeletons: The Particularly-Shaped Adaptive
Oscillator (PSAO) model, based on fractional chaos, synchronizes
with users’ gait in exoskeletons, reducing metabolic walking costs and
enhancing efficiency in assisted walking [15].
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Fractional Derivative

Fractional Derivative

Fractional Derivatives Concept: Fractional derivatives extend
traditional differentiation to non-integer orders, allowing for a more
nuanced understanding of rates of change. Grünwald–Letnikov
characterization is employed for analysis in this article.

Grünwald-Letnikov Characterization:

Dα
0,t f (ti ) = lim

∆t→0

1

∆tα

∞∑
n=0

(−1)n
(
α

n

)
f (ti − n∆t) (1)

where
(
α
n

)
is the generalized binomial coefficient [9].

Computational Advantages: Grünwald–Letnikov method extends
the Euler method and incorporates fractional binomial coefficients
[10]. The method offers stability and computational efficiency,
making it suitable for numerical simulations and computations.
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Fractional Rössler Oscillator

Fractional Rössler Oscillator

Equations: Here 0 < α < 1 is a real number,and a,b,c are the
parameters where a and α are bifurcation parameters. Dα

0 denotes
the fractional derivative following the GL definition [11].

Dα
0 x = −y − z

Dα
0 y = x + ay

Dα
0 z = b + z(x − c)

(2)

Introducing fractional derivatives to the Rössler attractor enriches its
dynamics, leading to even more intricate and complex behavior.

Studying these fractional dynamics offers deeper insights into
nonlinear systems, chaos theory, and has implications for
understanding complex phenomena like human gait.
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Fixed Point Analysis and Stability

Fixed Point Analysis and Stability

Two fixed points [Sp+(xFp+ , yFp+ , zFp+) and Sp−(xFp− , yFp− , zFp−)]:(
c ±

√
c2 − 4ab

2
,−−c ±

√
c2 − 4ab

2a
,
c ±

√
c2 − 4ab

2a

)
.

Jacobian:

J =

 0 −1 −1
1 a 0
z 0 x − c


Characteristic equation:

λ3 − λ2(a+ x − c) + λ(ax + 1 + z − ac) + c − x − az = 0 (3)

(Where λ is the eigenvalue, a, b, c are parameters).
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Results and Analysis

Plot of Oscillator and fixed points

Fractional Rössler attractor when fractional order (α) is increased from 0.5
to 0.885 by keeping other parameters constant [Fixed points are shown
with red dots]:
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Results and Analysis

Plot of y(t) vs. t

Figures show the plots of y(t) vs t for α = 0.5 (periodic),
α = 0.61(periodic), α = 0.885 (chaotic) (LHS TO RHS (anti-clockwise)):
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Results and Analysis

Bifurcation Diagram

Bifurcation diagram showing the minimum and maximum values of y
when (−0.2 < a < 1) [LHS] and (0.3 < α < 1) [RHS] when other
parameters are constant. Here last 500 points of y values are considered.
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Results and Analysis

Comments

In this ongoing work, we have analysed fractional rossler oscillator and
the impact of the fractional parameter evolution on the oscillator
dynamical behavior.

We have demonstrated the effect the fractional parameter for the
emergence of Hopf Bifurcation which gives rise to a limit cycle and
eventually leads to chaos.

The evolution of limit cycle gives us an insight for the human gait
analysis which exhibits also an oscillatory behaviour.
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Results and Analysis

Limit Cycles

Limit Cycles when the fractional parameter varies from 0.5 to 0.6
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Results and Analysis

Matignon Criterion and Eigenvalues

According to Matignon, if all the eigenvalues lie outside the closed
angular sector of |arg(λi )| ≤ απ

2 , the stability is guaranteed [14].
Here, λi is the ith eigenvalue of the characteristic equation.

For α = 0.61, one of the eigenvalues corresponding to the fixed point
(0.2679,−0.5359, 0.5359) is 0.1802 + 0.9653i . Hence,
|arg(0.1802 + 0.9653i)| = 5.9308 and απ

2 = 0.9581.

Similarly, another eigenvalue is (0.1802− 0.9653i). Hence,
|arg(0.1802− 0.9653i)| = 5.9308. The last eigenvalue is
(−3.5924 + 0.0000i). Hence, |arg(−3.5924 + 0.0000i)| = 0.
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Results and Analysis

Eigenvalues

Eigenvalues corresponding to S+
p and S−

p for α = 0.7 (before hopf
bifurcation) [a = 0.5, b = 2, c = 4]:
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Results and Analysis

Eigenvalues

Eigenvalues corresponding to S+
p and S−

p for α = 0.885 (after hopf
bifurcation) [a = 0.5, b = 2, c = 4]:
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Results and Analysis

Lyapunov Exponents

Formula used [18]:

Lyapunov Exponent =
1

N ·∆t

N∑
i=2

ln

(
∥Pi∥
∥P1∥

)
(4)

N is total number of time steps.

∆t is the time-step.

i is the time-step index ranging from 2 to N.

Pi is the perturbation vector at time-step i .

||Pi || is the Euclidean norm (magnitude) of the perturbation vector at
time step i .

||P1|| Euclidean norm of the initial perturbation vector at time step 1.

In this study, for alpha = 0.885, a = 0.5, b = 2, c = 4, the positive
Lyapunov exponent is equal to 0.57211.
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Application to Human Gait System

Application to Human Gait System

Complexity of Human Gait: Human gait, as an oscillatory system,
shares fundamental characteristics with the dynamic behavior of the
Rössler oscillator. However, the unpredictable non-linearity and
uncertain environment make practical motion capture challenging.

Application of Fractional Rössler Oscillator: The utilization of
fractional Rössler oscillators in modeling human gait is unconventional
but promising. These chaotic systems can effectively capture the
complexity and nonlinear dynamics of gait, aiding in the analysis of
both symmetric and asymmetric gaits and potential gait disorder
treatments. Another control parameter α helps to tweak the values
governing the system dynamics more and provides better flexibility to
understand human gaits.
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Application to Human Gait System

Application to Human Gait System

Multifaceted Benefits: Fractional calculus allows the incorporation
of memory effects, essential for accurately representing gait’s adaptive
nature. Chaotic systems align with the stochastic variability inherent
in gait, and fractional-order systems hold promise for nonlinear
control in gait rehabilitation and assistive devices, offering
individualized solutions for patients (with orthopedic diseases,
limping). Additionally, it aims to unravel the potential of fractional
Rössler oscillators in enhancing our understanding and improvement
of natural gait patterns.

Increased Adaptability: Fractional-order systems offer potential
advancements in nonlinear control, enabling more adaptable control
in the domain of gait analysis.
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Conclusion and Future Scope

Conclusion and Future Scope

Fractional Derivative Parameter Variation: Adjusting the
fractional derivative parameter in the fractional Rössler oscillator
results in qualitatively different dynamical behaviors, following a
Hopf-like bifurcation scheme.

Hopf-like Bifurcation Sequence: When transitioning from
fractional order alpha between 0 and 1, the system’s orbits undergo a
Hopf bifurcation. Initially, there’s a shift from a stable fixed point to
an unstable fixed point plus a stable limit cycle. Subsequently, for
α = 0.885, the limit cycle transforms into a chaotic attractor. Here
for comparison, a,b,c are fixed as in the benchmark integer order
Rossler Oscillator (a = 0.5, b = 2, c = 4).

Relevance to Human Gait: These findings are significant in the
context of human gait design and improvement, as they suggest that
perturbations in gait dynamics can be controlled and modeled using
fractional-order chaotic oscillators.
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