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When a dynamical system is investigated from a time series, one of the most challenging problems
is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to
this problem but very few have considered the influence of symmetries in the original system and
the choice of the observable. Indeed, it is well known that there are usually some variables that
provide a better representation of the underlying dynamics and, consequently, a global model can be
obtained with less difficulties starting from such variables. This is connected to the problem of
observing the dynamical system from a single time series. The roots of the nonequivalence between
the dynamical variables will be investigated in a more systematic way using previously defined
observability indices. It turns out that there are two important ingredients which are the complexity
of the coupling between the dynamical variables and the symmetry properties of the original system.
As will be mentioned, symmetries and the choice of observables also has important consequences
in other problems such as synchronization of nonlinear oscillator0@2 American Institute of
Physics. [DOI: 10.1063/1.1487570

A great number of techniques developed for studying principle, to have a complete description of the state of the
nonlinear dynamical systems start with the embedding of system under study. Unfortunately, in most experimental
a scalar time series, lying on arm-dimensional object, in  situations, only a single physical quantity is measured.
an embedding space of dimensiod. Several works have  Hence, the time evolution of the system is known through a
analyzed how larged should be in relation tom to ensure  scalar time series. The next step is therefore to reconstruct a
a theoretical equivalence between the embedded dynam- phase space from this scalar time series. The trajectory re-
ics and that of the original system. The main results constructed is thus expected to have the same properties than
reached are valid, in general, regardless of the observable the trajectory embedded in the original phase space.
chosen. In a number of practical situations, however, as A pioneering paper by Packaret al® points out two
may be expected, the choice of the observable does matter ways of reconstructing a phase space, namely, by using time
for our ability to extract dynamical information from the delay or time derivative coordinates. Another kind of coor-
embedded attractor. This paper is devoted to analyzing dinates, name|y principa| Componeﬁtmay also be used.
such a problem using benchmark models. It turns out  Gibsonet al® demonstrated that the relationships between
that there are two important ingredients: the complexity  delays, derivatives and principal components consist of rota-
of the coupling between the dynamical variables, and the  tjon and rescaling. Consequently, from Gibson’s point of
symmetry properties of the original system. To quantify  yjew, statements about the nature of the equivalence between
the coupling complexity, we estimate observability indices  the original and the reconstructed phase portraits would not
for our examples. The ideas discussed in the paper have depend on the coordinate system.

direct bearing on standard problems in nonlinear dynam- Once a phase portrait is reconstructed, it is sometimes
ics such as model building and synchronization. desirable to obtain a model able to reproduce the trajectory
in the reconstructed phase spasee, for instance, Refs. 4 or

5, and references thergirit may be also attempted to control
the dynamical behavior using a feedback t&fror to syn-

One way of investigating nonlinear behavior is by em-chronize two systenfs.In all these cases, ease of success
bedding a time serie@s a result of the observation of the clearly depends on the choice of observable, but this has
time evolution of the systepin phase space. A point in such rarely been related to the observability of the dynamics. Here
a space is then associated with a single state of the systewe examine two aspects of this relevance for the choice of
which is fully defined by a set o dynamical variables. the observable(i) the complexity of the couplings between
When an experimental dynamical system is investigatedthe dynamical variables ari@d) symmetry properties. These
thesem physical quantities should be all measured, at least inwo points of view are investigated with the aid of observ-

I. INTRODUCTION
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ability indices introduced in Refs. 9 and 10. In this paper wecouplings may effect the observability of a system when the

refine the original definition of such indices, explore aspectanalysis is carried out from a single variable.

relating to time averaging and ergodicty. Let us start with a simple example. We assume that the
The paper is organized as follows: In Sec. Il, we firstoriginal system is the Rssler system?®

present a detailed case of how the choice of observable can

affect the ability to reconstruct dynamics from scalar time

series. In the second part of Sec. Il, the definition of anyhere @,b,c) are the bifurcation parameters. The cases

observability index is reviewed. In Sec. Ill, using severalwhere each dynamical variable is successively the observ-
bench models and the observability indices we show that thghle are now investigated.

nonequivalence between observables has two basically dif- [ et us start with the measurement function such gat
ferent sources, namelfi) the couplings between the differ- —h(x,y,z)=y. The coordinate transformatish, reads then
ent dynamical variables, this information is quantified by thegs

observability indices, andi) the presence of symmetries to

X=—-y—2z, y=x+ay, z=b+z(x—c), (4)

which the observability indices are basically insensitive. The X=y,
main conclusions of the paper are summarized in Sec. IV. d,=1 Y=x+ay, (5)
Z=-y—z+ax+a?y,

II. NONEQUIVALENCE OF THE DYNAMICAL and the corresponding model functiéi is

VARIABLES: A FIRST EXAMPLE 2
Fy=—b—cX+(ac-1)Y+(a—-c)Z—aX

Assume that the dynamical system under study(iy ) )
+(a*+1)XY—aXZ—-aY+YZ (6)

=f(x(t)), wheret is the time,xe R™ is the state vector, and

f is the nonlinear vector field. As often happens in experi-  This is a very favorable case because the determinant of
mental settings, a single physical quantity is expected to beghe jacobian matrix7(®,) never vanishes and it may be
measured. Hence, the recorded variglliso called the ob-  easily shown thad, is injective. The coordinate transforma-
servabl¢ is obtained using a measurement functiok™  tjon @, therefore defines a diffeomorphism from the original
—R such that the recorded scalar time sefie&)};—o IS phase space to the reconstructed one. Consequently, the
given by s(t)=h(x(t)). This measurement function acts Rpssler system is most observable from t@bservable,

therefore as a projection of an-dimensional object onto @ j e, they-variable is the best observable for investigating
one-dimensional space. An equivalent phase portrait is thugis system from a scalar time series.

reconstructed using the derivative coordinates as suggested \yhen the observable is the variable of the Essler
by Packarcet al.! In this paper, most of examples will con- system, i.e.s=h(x,y,z)=x, the coordinate transformation
cern three-dimensional systenta< 3) which will be recon- ¢ reads as

structed in a three-dimensional space. Consequently, the re-

constructed portrait is spanned by the derivative coordinates X=X,
acoording to O,={ Y=—Yy~—2 (7)
X=sg Z=—-x—ay—b—z(x—c),
=1 Y=5, (1) and the corresponding model functiéy is
Z=5,

F,=ab—cX+X2—aXY+XZ+acY+(a—c)Z
A coordinate transformatio® between the original dynami-

cal variables X,y,z) and the derivative coordinateX (Y,Z) _(arctZ-aY+b)y

can therefore be defined. In the case where, the trans- atc—X '

formation® reads

()

This functionF, is rational, i.e.; it presents a singularity
afg dfs dfg at X=a+c which is induced by the inverse functiah, *.
X=s, Y=fs, Z= gfﬁ Wf + Efz' (2 in fact, @, is injective but the determinant of its Jacobian
matrix J(®,) vanishes forx=a+c. A singularity is there-
wheref,, fy, andf, are the components df When the {40 involved in this coordinate transformation. The set of
derivative coordinates are used, a differential model may bSointS associated with the plare=a+ ¢ cannot be observed
written under the form, from the (X,Y,Z)-space through the variable. Although
X=Y, Y=z, Z=FS(X,Y,Z), 3 thi_s_ set is of Lebesgue measure zero, it effects the pbserv-
ability of the system but not too much because the singular
whereF(X,Y,Z) is the model functiori” Here is the great plane is located near the outer boundary of the attractor.
adVantage Of the Continuous mOdel bUIlt on the deriVatiVe The |ast case is to Consider thwariab'e of the F'éesler
coordinates because, when the original system is known, tlgaystem as the observable, i.e=h(x,y,z)=z. The coordi-
model functionFs may be analytically derived using the co- nate transformatiod. reads as
ordinate transformatiod.'° The functionF contains infor- ‘

mation on the nature of the coupling between dynamical X=1z,
variables “seen from one observable point of view.” Our  ®,={ Y=b+2z(x—c), 9
main objective is thus to investigate how the nature of the Z=[b+z(x—c)](x—¢c)+z(—-y—12),
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clearly equal to 3 but it is much more difficult to state about
the embedding dimension of theinduced phase portrait
(Fig. ).

The observability of the dynamics from a scalar time
series appears to be related to the complexity of the model
function and the presence of singular sets. Based on the com-
plexity of ®,, ®,, and®, the dynamical variables may be
classified asy>x>z, wherel> means “provides a better
observability of the underlying dynamics than.” It should be
noted that when a global model is attempted using a global
modeling technique, the variable allows to obtain a global
model with relative ease while tteevariable provides a very
difficult test case and so far no three-dimensional global
models have been obtained unless an ad hoc structure is
used'®!! The previous order is therefore strongly related to
FIG. 1. The three induced phase portraits from the dynamical variables othe difficulty to obtain a global model from a scalar time
the Rasler system using the derivative coordinates and the estimations gferjes.
their embedding dimension by using the false nearest nei . 5 ;

(a,b,c)=(0.398?2.0,4.0). Theyembe%ding dimensions are gg?nopolrter:c]ietjhs(i)r?s For _the_Re_ster system, WhICh has no symmetry, the ob-
delay coordinates from a time series recorded with a sampling rate equal %ervab'“ty indices convey significant information. We saw
0.01s. that they turns out to be the best variable while, on the other
handz, is by far the worst. This can be confirmed in a num-
ber of ways, as for instance the easiness with which one can
obtain a global modé&! or the possibility of synchronizing. A
direct substitution synchronization schemeriés only successful
if the y variable is used as the driving sigriaEven when
F=b—cX-Y+aZ+ax’~XY synch?/onization is attempted using agaptgative control tech-
(ab+3Z)Y—aY?—bzZ 2bY?-2Y3 niques the conclusion is the same, namely that no synchro-
X + X2 (100 nization is possible driving the slave system either withxhe
or the z variables'* The possibility or easiness of synchro-
ghization will not only depend on observability but will also
compared to the one of the model functip. In this paper, P effected by the way synchronization is attemped. For in-
complexity designates the number of monomials involved irSt@nce, if proportional linear negative feedback is used in-
the model function as well as the order of the nonlinearitiesStéad of direct substitution it is possible to synchronize two
and of the poles. Thus, a model function with a large numbeROSSIer systems. However, if the variabieis used it will
of monomials with high order of nonlinearities or, in a stron- F€uire greater effort to synchronizeith the same perfor-

ger way, with high order for the poles, is more complex thanMance than ify is used. Hence, although there seems to be
a model function with few monomials with low order non- Some relation between observability and synchronization we

11516
linearities. Note that the model function expresses the cou€@nnot, now, make any generalizatigr! _ ,
plings between the dynamical variables of the original sys- | N€ nonequivalence between the dynamical variables of

tem “seen from one observable point of view.” In the present® System can be made somewhat by quantifying the observ-
case, the denominator is now a second-order polynomial. IAPIlity with an index as introduced in Refs. 9 and 10. The
this case, the double singularity is close to the attractor an§ONCePt f;f observability in linear system theory is
effects the shape of its manifold. This creates a region of thetandard:'” Consider the system,
z-induced attractor where different revolutions are not well
distinguished[Fig. 1(c)]. Such a feature will obviously in- x=Ax+Bu, s=Cx, (12)
duce some difficulties in investigating the dynamics from the
z-variable. Significant differences between the attractor rewherexe R" is the state vectorse R" is the measurement
constructed from the-variable and the other twéx and  vector,ue RP is the input vector, anflA,B,C} are constant
y-variableg can be easily appreciated from Fig. 1. matrices. For a nonlinear systefjs the Jacobian matrix of
Note that the coordinate transformatidrn, is again in-  that systemB is the matrix defining the coupling between
jective but the determinant of its Jacobian matfixp,) van-  the system, and an external contraint &hdefines the mea-
ishes wherz?= 0. This is again a plane in the original phase surement function designated by In all the cases here in-
space but its influence on theinduced attractor is more vestigated, the systems are autonomous,Be.Q or u=0.
important since it is an order-2 singularity. On the otherThus the systenill) is said to be state observable at titpe
hand, the couplings between the dynamical variables ardé the initial statex(0) can be uniquely determined from
more complicated when they are observed fromzhari-  knowledge of a finite time history of the outpyfr), O<r~
able. The nonequivalence among the dynamical variables is:t;,'’ since the inpuu(7)=0.
confirmed when the embedding dimension is computed. For One way of testing whether the systddl) is observ-
the x and y-induced phase portraits, such a dimension isable is to define thebservability matrix

(a) x-variable (b) y-variable (c) z-variable

and the associated model function is

The complexity of the model function has increase
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FIG. 2. (a) The Rassler attractor(b), (c), and(d) are, respectively, the local observability indiegs 6, , and s, projected onto tha Xy plane. Higher peaks
indicate higher observability. Recall thét is the observability attained when observing the system only through varét)le

C where .,/ QQ" x(t)] indicates the maximum eigenvalue of
CA matrix QQ" estimated at poink(t) (likewise for \ ;) and
Q= CAZ | (12) ()7 indicates the transpose. Then<@(x)<1, and the
: lower bound is reached when the system is unobservable at
CA;nfr point x. It should be noticed that the indé%3) is a type of

] _ _ condition number of the observability matrix. The matAx
The system(1]) is therefore state observable if matXis  (5kes into account the coupling between the original dynami-
T.u“ rank, thatis if rankQ) =n. This definition is a "yes” or - .| yariables while the matri€ corresponds to the measure-
no” measurement of observability, that is, the system 'S ment functionh. If the measurement function is defined by

either observable or not. In practice, however, a S.VS‘e”? MaYn identity matrix, the dynamics is completely observable.
gradually become unobservable as a parameter is varied Jhen a single variable is measured, ma@ibecomes a row
for nonlinear systems, it seems reasonable to suppose that hal . ' .
. : vector and is directly responsible for any decrease in observ-
there are regions in phase space that are less observable th nl't
others. We quantify the degree of observability with the ob-2PMY- o .
From the definition, it becomes clear thi(tx) is a local

servability index, defined as : i >
. measure, which obviously depends on the painit state
_ Nminl QQ",X(1)]] (13  Space where the system is. To see this more clearly, Fig. 2
Nmad QQTx(1)]]” shows the local observability indice%,, &,, and 8, pro-

S(X)
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jected onto thexXy plane. Higher peaks indicate higher ob- TABLE I. Observability indices for the Resler system averaged in different

servability. ways. Theo indicates the respective standard deviation.

The following remarks can be made. When observing 5+ Sto,
the system through variabi€t), the least observable part of —
the attractor is precisely when the trajectories start to depart ~ 9x=0.025-0.014 5,=0.022£0.014
from the neighborhood of thex y-plane because the sheet- 8,=0.133-1.7<10" 8,=0.133-1.7x10 %
like vertical part of the attractor faces tjieaxis and can only 9,=0.010-0.024 5,=1.9x107+0.024

be seen sideways from theaxis. This explains why the
observability indexs, does not decrease in that part of the

attractor. For a similar reason, the observability from zhe from the values in Table |. the variables can be ranked in

variable is very low in parts of the attractor that are in thedescending degree of observability according to
neighborhood of th& X y-plane, as seen in Fig(®.

It is also interesting to notice that the plots in Fig. 2 are ~ YPXxP>z, (16)

in agreement with Eq45)—(10). In particular, consider the \yhich precisely agrees with the sequence found in Sec. I
model functionF, that results when the dynamics of this \ypere the complexity of model function®; was investi-
system are reconstructed from thevariable only. From Eq.  gated in a rather detailed way.

(8) it is clear that such a function becomes singulaxaa As a final observation on the indices, we simulated the
+c. The aforementioned plots were obtained &¢0.398,  Regsler system with the same parameter values and over the

b=2.0, andc=4.0. Therefore the singular plane i%|X  same length of time, but with one hundred random initial
=4.398), which agrees with the least observable region se€lhnditions, yielding one hundred different valuesmfTak-

'EOF(;Q' h2(b).. S'm"ﬁrly;( qu' (10 Tbhgcomesbsmglgulalr ar ing the ensemble average and standard deviation then gave
=0.0, that Is, at thecxy-plane. This can be clearly seen us an idea of how sensitive the calculations are with respect

ﬁg;ngsggﬁeﬁsgih&gl;ngt Zg nginf'%a!y’;ggi'r?ﬁs(?egjﬁi i éo initial conditions. The ensemble averages with respective
g yp P g istandard deviations wer[ 5,] =0.022+ 4.4 1074, E[8,]

great observability at any point on the attractor as seen i A
Fig. 2(0). =0.133+1.1x107 %%, and E[§,]=2.0x10 4+ 6.4x 10 C.

The observability indices illustrated in Figs(a?-2(c) These results shpw that whereas the ense_mble average is
were calculated along a trajectory embedded in theskp ~ VeTY close to the time averagsee Table), that is, along the
attractor. We obtain basically the same result whether w&ajectory, the ensemble standard deviation is typically two
calculate the observability indices using a single increasinglprders of magnitude smaller than the counterpart take along a
long trajectory, or an increasingly large set of trajectorie§raJeCF°ry- Again, this suggests that the observability index is
starting from random initial conditionéFig. 2. This sug-  ergodic. .
gests ergodicity, at least to some extent. In what follows & will be calculated for several systems

It will be convenient to summarize the observability at- with diverse dynamical properties. To this end, the time av-
tained from a given variable using an average value. In thigraged will suffice. The reader should bear in mind, how-
respect, the two following possibilities should be consideredever, that the observability indices are local quantities and

T that taking the average is useful inasmuch as it portrays an
5= EE S(x(1)) (14) ~ overall picture but, on the other hand, plots like those in Fig.

T=o 2 could be used to give more details on how the observability

varies along the attractor.

and
T
1 T Ill. PROPERTIES
— 2 A\ QQX(1)] ,
5 Tt=o0 (15 A. Relevance of the nature of couplings
1.7 ’ In the previous section, we only investigated the case

;EO Amad QQT,X(1)] where the observable is one of the dynamical variables of the
B original system, i.e., when th@-matrix corresponding to the
where T is the final time considered and, without loss of measurement function has a single diagonal element equal to
generality the initial time was set to ke 0. 1, all the others being equal to zero. This is a very particular
For the three dynamical variables of thesRter system case and, in practice, the measurement function may also be
(4), the observability indices averaged in both ways area combination of the dynamical variables. For instance, let us
shown in Table | for comparison. assume that the Rsler system is now rewritten in the phase
From Table | both ways of estimating the observability space spanned by the coordinate sets reading as
indices yield results which are within one standard deviation
from each other. This suggests that the error is not statisti-
cally significant. However, for the sake of presentation, un-The Rasler system may then be rewritten under the form,

X'=y+z, y'=z+x, zZ'=x+y. 17

like Ref. 10, it will be preferred to usé rather thans be- x'=3[(1—a+c)x' +(a—1+c)y’
cause this seems to be somewhat closer in spirit to the
procedure followed in estimating Lyapunov exponents. Also, —(1+a+c)z’ —2b+ (X' —y")2—y'?)],
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sion point of view, all these variables are equivalent.
Nevertheless, when they are compared to the original vari-
ables k,y,z) of the Rasler system, the embedding dimen-
sion has increased, meaning that the differential embedding
needs an additional dimension to unfold the attractor without
any ambiguity. Hence it seems reasonable to suggest that the
dynamics look more intricated in the new space.

When they'-variable is taken as an observable, the co-
ordinate transformation reads as

X=X+2z,
Y=-y—z+b+2z(x—c),
Py=1 2= —bic+1)+(b—1)x—ay+cc+1)z 2V
+(1-2c)xz—yz— 2.

(a) x'=variable (b) y'—variable (c) z’-variable

It has a Jacobian vanishing for

FIG. 3. The three induced phase portraits from the rotatessiRp system .
using the derivative coordinates and the estimations of their embedding y=1+(1l+cja—b+c(c+1)—x(1+2c+a)
dimension by using the false nearest neighbors technique.
v using g a +(3c+a)z+x%2—3xz+7% (22)

which defines a singularity of order-1.

N o P\’ Finally, when thez’ -variable is the observable, the coor-
y= 2[(a DX+ (1-a)y’+(at+1)z7]=x, (18 dinate transformatiod
'Z/:b_[b_ %((X/_ZI)Z X:X"r‘y,
®., = Y=x+(a—1)y—z, 23
+2c(x'+y' —2)—y'D)(c+x'). 2= Z=—b+(a—1)x+(a2—a—1)y (23
This system has the same fixed points than the original t(c-1)z—xz,
Rossler system and, consequently, the same manifold. Bufas a Jacobian vanishing for
the coupling between the dynamical variablgs,{’,z’) are )
completely different than the ones between the original dy- 2= (2¢+3a—ac—a®—2)+(a—2)x, (24)

namical variables. Each dynamical variable corresponds thich defines a singularity of order-1. The most interesting
an obser\{able composed of two dynamical variables of th@roperty of these observables is that the model functigns
original Rassler system according to andF,, are polynomial. Although there are monomials that
include non integer power of the derivatives, there is no pole
(19 involved and such a function would be less difficult to esti-
mate from data set than for rational functions. Let us note

This coordinate transformation corresponds to a rotation o?hat the m(t))del :unction;y, ish mucré rln?re c_omplicate(h
the attractor in the phase space. For the sake of simplicit}?‘rg'_al_rh_n“m equ termsthan tf ehmo € lec,t'o'F]{’a ol
we will continue the analysis using the dynamical variables Is analygi#irmgrms of the complexity of dynamica

(x,y,2) of the original Resler system. For instance, when couplings_ sugge§ts_ the _observability ordeTDny?(’._
the observable is the variabie, the coordinate transforma- Again, this analysis is confirmed by the observability indices

x'=s=h(x)=y+z, Yy =s=h(x)=z+x,

zZ' =s=h(x)=x+y.

tion @, _, ., reads as which are
X=y+1z, 6, =0.005, &,,=0.010, &,,=0.044. (25
Y=b+x+ay—cz+xz The indices are effected by this rotation of the attractor
Py = Z=-bc+(at+b)x+(a®?—1)y+(c?—1)z in the phase space although the topology is preserved. What
—(2c+1)xz— 22+ x?2. is modified is in fact the couplings between the dynamical

(200  variables used for describing the attractor. The couplings are
therefore relevant for the nonequivalence between the dy-

The determinant of its Jacobian matrix vanishes for a quite _~ : . A
namical variables since only a rigid displacement of the at-

complicated function depending on the system parameter:%r.actor has been applied, i.e., the dynamics is not changed at
This condition defines a singularity of order-3. Moreover, the . S o
all. Thus, for a given invariant set, the observability of a

coordinate transformatio#®,, cannot be inverted in the gen- . . . :
. : . _given dynamical system depends crucially on the choice of
eral case and, when the numerical values of the blfurcatloﬁ1

parameters are used, the expressior\ﬁ)g})‘l is too compli- the observable.
cated to be useful. The observability of the dynamics from
this variable would be very poor. A plane projection of the
x'-induced phase portrait is displayed in Figa)3 The em- Another important point is to investigate how the sym-

bedding dimension is clearly equal to 4 for each of the dy-metry properties may effect the observability of a dynamical
namical variablesx’,y’,z"). From the embedding dimen- system when viewed from a single time series. Indeed, when

B. Effects of symmetries
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ally mod out the symmetry, it is rather impossible to recover
such a symmetry from a global model obtained througtezthe
variable. It should be noted however that, disregarding the
fact that such models cannot possibly display a symmetry
which cannot be observed, quite accurate global models from
the thez variable can be obtained quite eaSilgs suggested
by the high observability index The moding out of the ro-
tation symmetry is also quite restrictive from the point of
view of master-slave systems, in which case it is well known
FIG. 4. The three induced phase portraits of the Lorenz system. While the that synchronization fails in a number of different ap-
and y-induced attractors have an inversion symmetry, zhene does not proaches when the-variable is transmitteft14
have any symmetry. We have now to check whether the increase in observ-
ability arises from the modding out of symmetries or from
the lower complexity of couplings. We will therefore con-
the system under study presents some symmetry propertiesider the case of an equivariant system and its image
particular features may appear. A system possessing sonsgstent® An image system is a system which is dynamically
kind of symmetry is said to be equivariant, i.e., there is arequivalent to an equivariant system but without any symme-

(a) x—variable (b) y—variable (¢) z—variable

operatorl” such that try properties. The Lorenz system and its image, the so-

T-f(x)=fT-x), (26) called proto-Lorenz introduced by Miranda and Stdnill

_ _ { be analyzed.

yvherel“ IS a squarenxXm mat_nx def_mm_g the symmetry. For The image of the Lorenz system may be derived by
instance, the Lorenz systéfris equivariant. The dynamical modding out the symmetry with the aid of the coordinate
system equations read as transformation;

Xx=o(y—X), y=Rx—y—xz, z=-bz+xy, (27 u=x2—y2,
where o is the Prandtl numbeR is the reduced Rayleigh ¥={ v=2XY, (30
number, and is an aspect ratio of the convection cell. When w=z

he bifurcation parameter val r 10.0, 28. nd . . . .
the bifu cat.o parameter va ues are ;et to 10.0, 28.0, a gs introduced by Miranda and StoffeSuch a map is typical
8/3, respectively, the asymptotic behavior settles down onto ! . .

. S X . ._for rotation symmetry byr around thez-axis. The image
chaotic attractor which is setwise symmetric under a rotation

around thez-axis. In such a case, the operatoreads as System thus reads as

1 0 0 U=(—o—1u+(oc—Ryv+ovw+(1—0)p,
r=( 0 -1 0], (28 v=(R—o)u—(o+1l)v—uw+(R+0o)p—pw, (31
0 0 1

w=—bw+ %v,

that is, the chaotic attractor is globally invariant under the

map ,y,z)—(—X,—Y,z). Two kinds of dynamical vari- wherep= JuZ+ 02 1t may be easily checked that the attrac-
ables may be distinguished. First, tkeandy variables are tor solution of the image system is topologically equivalent
mapped to their counterpart under the action of the symme® thez-induced attractor of the Lorenz systefig. 5).

try. As a consequence these variables allow to distinguish the ~ The overall dynamics of the image system is clearly sim-
two wings of the attractor. Second, tizevariable is un- pler than the original Lorenz system because the former does
changed under the action of the symmetry. This variable dog0t have any symmetries. On the other hand, as can be easily
not therefore provide any information about the symmetry ofverified comparing Eq¢27) and(31), the couplings between

the attractor, i.e., the two wings are not distinguisiigdy. ~ the dynamical variablesu(v,w) are somewhat more com-

4)1° plicated than the couplings among the original dynamical
However, the observability indices for this system, ~ variables k,y,z) of the Lorenz system. Such an additional
_ _ _ complexity of the dynamical couplings in the image system
8=6.5x10"° §,=82x10° §,=2.2x10°°, is accompanied by an expected decrease of the observability

(29 indices, which for systeni31) are

would seem to suggest the observability ordery>>x. For — — s = . = 5
the Lorenz system a new ingredient plays an important anéu_ 1.44<10°%  6,=1.60<10°7,  6,=3.76x10 "
fundamental role, namely, the rotation symmetry. In this (32

, Y, Yy Yy
case, as argued, the observability indices, as a consequeremm the stand point of symmetries, the image system is, of
of being a local quantity averaged over the attractor, does natourse, more observable than the original Lorenz system,
convey all the information required for a more precise analy-because when such a system is observed frorwtkariable
sis. Indeed, the symmetry properties can only be identified ato symmetry is modded out and there is no ambiguity as to
a global point of view, an equivariant dynamics and its imagewhere the system is in phase space. This confirms that the
without any residual symmetry being locally equivaléhds  observability indices do not convey information about the
a matter of fact, because observations ofzhariable actu- system symmetry.
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FIG. 5. The proto-Lorenz system represents an image of the Lorenz system, 1300
i.e., a system with equivalent dynamics but without any symmetry proper-
ties.
27.5 :
To notice that the time evolutions of tlzevariable of the 25.0

s
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Lorenz system and of thg-variable of the image system are M%M’I A i
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o
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rigorously identical and, consequently, they provide the same 7z 4,5 \\\:\{\\\\\\\\}s\.\' [' ' ’/&9"”!!’3/;’//;// /
induced phase portrait spanned by their derivatives. Thus, the \ \Q\\\N\'@% ” '/{”’/”,’f}%/ /
observability indices strongly depend on the couplings be- 200 & N ‘!/
tween the dynamical variables, as argued in Sec. Il. It should
be mentioned that we do not usually compare the observabil-
ity indices among systems because they do not seem to have 17 1
an “absolute” significance. However, an image system is
here compared with its twofold cover, i.e., the proto-Lorenz B0 e 0 oo 20 40 60
system with the Lorenz system. In that case, the dynamics is X,
equivalent modulo the symmetry properties. Only the sym- (b) (21,2) plane projection
mejmes induce different couplings between the dynamlca":IG. 6. Plane projections of the attractor solution of the laser sy$83n
variables. (R=24.0,6=2.0, y=0.25, ands=0.1). The angular velocity depends lin-

As a final example, we will focus our attention on a 5D early on the detuning.
dynamical system which presents a continuous rotation sym-
metry. The set of Eq9.33), shown below, describes a laser

system for which the detuning between the normalized This set of fixed points is in fact a tordg°. It should be

steady-stat_e laser frequency and the molecular resonnantSiiced that thez-variable is unchanged under the action of
frequency is taken into accoufttlt reads as

the rotation symmetry which acts independently on the

X1=—0(Xg+ %= Y1),  Xo=—0(Xp— X1~ Y5), (X1,X5) and (y1,y,) planes® The effect of the continuous

. rotation is displayed in Fig. 6 fo6=0.60.

Y1=RX Y1+ 0y m X2, (33 Figure 7 shows the embedding dimension estimated
Vo=R¥%— 0Y1—Yo—XpZ, 2=—yZ+X1y1+XoYs, from each state variablt_a. Fa&r, X,, v, andy,, which are _

. . . ) ) changed under the action of the symmetry, the embedding
whereR Is the pumping rateg IS the ratio of the c_aV|ty dimension is around 5 or 6, whereas the phase portrait in-
decay rate of the field in the cavity over the relaxation CON-4yced by thez-variable, which is invariant under the action
stant of the polarization, angl is the relaxation constant of of the symmetry, is characterized by an embedding dimen-
the normalized invgrsipnxg,xz) are the real and .imag.inary sion equal to 3(Fig. 7). This means that the whole set of
parts of the eIecFrlc f'eld’y(l'y?) are real and imaginary dynamical variables is, in principle, observable from the
_parts_of the_ ar\]zrr;phtude of polarization, arzds_ the no_rmal- variablest, X,, y;, andy, while only three dimensions can
ized inversior” The system(33) has one fixed poinf, be distinguished when observing the dynamics from the

'OC"?‘ted at Fhe origin of the phase space and a continuous Sl ariable. Indeed, when the dynamics is investigated from
of fixed points where the z-variable, the symmetry properties are modded(Big.

X2 +x5=y(R—1— 6%, 8) as well as the distinction between tkeandx, variables,
. ) 5 , (39 and,y; andy,. Thus, two dimensions are roughly unobserv-
yity;=(1+69)y(R-1-6%, z=R-1-¢" able.
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5, =5.19x1077, §,=5.79<1077,
1 2

(37)
5, =1.94x10°7, 4, =231x10"7, §,=4.52x10°°

variable x, variable x,

I i . 0.0 ¢ I
00 20 40 60 80 100 00 20 40 60 80 100

d d seem to confirm the fact that the dynamics is less observable
from thez-variable than from the other variables. An impor-
tant remark should be given here. It is definitely easier to
investigate the laser dynamics from thkevariable, that is
when the symmetries are modded &uibut in this particular
00 - 20 40 60 80 100 00060 20 20 60 80 100 case, it is not associated with the greater observability index
d d because two variables are also modded out as clearly exhib-
ited by the estimation of the embedding dimension, which,
due to the symmetry, is less than the dimension of the origi-
nal phase space.
This example brings out the important fact that observ-
00 20 40 60 80 100 ability and embedding dimension are two different things
d which are not always correlated. This is also the first ex-
FIG. 7. Estimation of the embedding dimension using a false nearest neig/@Mple where the embedding dimension is less than the di-
bors technique for the phase portraits induced by the different dynamicamension of the original phase space. This example shows
variables(R=24.0, ¢=2.0, y=0.25, andé=0.1). also that a symmetry of the original phase portrait may in-
duce some lack of observability when a particular observable
is used. For instance, information on detuning cannot be re-
In fact the embedding dimension equal to 3 for thecovered from thez-observable. In our experience, systems
z-induced phase portrait may be theoretically justified whenwith inversion symmetry are harder complicated to investi-
the rotation vanishes, that is, when the detunifigs set to  gate than those with an order-2 rotation. In particular, in the
zero. In that case, the 5D laser syste38) is reduced to case of a system with an inversion symmetry, the image
K= —0(Xy—V1), ¥o=—0(Xo—Y>), without any residual symmetry. has oﬁen an entangled ma.ni-
fold. This is due to the strong singularity located at the origin
V1= —Y1T R} —X1Z, Y==Y.+ RX% =Xz, (35  of the phase space. Moreover, we believe that higher the
symmetry order, the less observable the dynamics.
We see from this analysis that our ability to investigate
The variables<; andx, (resp.y; andy,) become iden- an equivariant dynamical system depends on the couplings
tical and the system is reduced to a slightly modified 3Dbetween the dynamical variablesd the symmetry proper-
Lorenz system, ties. Indeed, the observability indices do not convey much
information on symmetry, since they are defined as average
of local quantities along the trajectory. For instance, in the
The observability indices Lorenz system, it is not possible to determine on which wing
the trajectory is when the-variable is the observable. No
information on the symmetry of the system is thus available.

variable y, variable y,

Z=—yZ+X1y1+ X5

X=—0o(x—y), Yy=—y+Rx—xz, z=-—vyz+2xy. (36

400 < ' ' ' This is not a great problem when a no-symmetry global
model is attempted. The obtained model reproduces the dy-
300 E namics of the image system and in such a case only the
complexity of couplings are relevant. Contrary to this, when
200 b ] synchronization of two Lorenz systems is attempted using
the z-variable as the drive, it is not possible to reach a syn-
v chronization staté* Such a feature may be explained on the
100 F ] symmetry properties of the system and not with the observ-
ability indices.
00 E
IV. CONCLUSION
T100 ¢ This paper has investigated the nonequivalence between
the variables of nonlinear systems for observing the underly-
A e 350 275 300 325 ing dynamics. We have shown that this is easier using some

X=z variables than with others, and quantified the easiness with

o ] _ observability indices. The observability indices do not con-

Gervative coorainates. The same bifurcation parameters than for Fig. 7 arg€Y MUCh information on symmetry as a consequence of
used. Thez-induced phase portraifig. 8 which is very similar to the ~P€iNg defined as averages of local measures along a trajec-

image of the 3D Lorenz systefiRef. 23. tory. The analysis systems with symmetry may need a global
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