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Some context: nuclear spins in a magnetic field

 Unequally populated energy levels lead to a macroscopic 
magnetization

 Energies in the radiofrequency range (~ 100-1000 MHz)
 Low polarizations for achievable fields and temperatures



  

 Classical dynamics of a magnetization in a magnetic field



  

 Classical dynamics of a magnetization in a magnetic field

Additional rf field

In this frame the field is time 
independent and the motion is simpler

Lab frame Rotating frame



  

 Classical dynamics of a magnetization in a magnetic field -
Magnetic Resonance

Precession about B1 in the r.f.
If at t=0 M//B0: magnetization vector set in motion
 and precesses in the xOy plane at w1

Magnetic resonance

B1

When B1 is turned off, precession is about B0

M



  

NMR detection: the induction signal

 The detecting coils are sensitive to the flux changes in the xy plane only

 Signal is produced by the transverse component of the magnetization

B0

x



  

Classical magnetization dynamics: the Bloch equations

S(t) = sine wave



  

Classical magnetization dynamics: the Bloch equations

The actual signal is exponentially damped 

exponential damping
 with g2

exponential return
 to equilibrium with g1



  

Coupling of the precessing magnetization with the detecting circuit: 
the “radiation damping”

 For large magnetizations and moderately lossy circuits the coupling with the detecting circuit 
is efficient

  A significant feedback field is generated by the precessing magnetization



  

  RD leads to nonlinear equations for the magnetization
and a non exponentially decaying NMR signal

no relaxation:



  

Analytical solutions exist for pure RD (no relaxation)

Motion on the Bloch Sphere (|M(t )| = constant)



  

Analytical solutions also exist for RD with pure T2 relaxation

The dynamics is simple: a return to the equilibrium direction
In the absence of T1, the norm of the emagnetization vector is not restored to its 
equilibrium value



  

 Study of the Maxwell-Bloch equation – a summary of possible situations

In all these situations, the dynamics is simple.

 What can make the dynamics more complex? 



  

Antagonizing dissipation and energy loss to the coil yields richer dynamics 

What magnetization dynamics do these equations predict ?

RD : the feedback field lags the transverse magnetization and rotate m towards +z 

Both lead the magnetization to the same equilibrium

 Relaxation of mz towards a time-varying value?

the feedback field drives m to -zIf What if y is made arbitrary?
 What if the stationary value m0

st of is negative (magnetization pointing to -z)?

Each case corresponds to actual experimental situations, combined in the following equations :

Time-varying «stationary» mth
0z 

Generalized feedback
 with arbitrary phase



  

The example dynamics of “inverted” radiation damping: y=+p/2 and 
relaxation (towards equilibrium with longitudinal time T1)

 These equations have additional dynamical content,
 But in general no analytical solution can be found 



  

Change of variables and

A qualitative analysis of the nonlinear Bloch-Maxwell equations
(w1 = 0)

: equilibrium magnetization (thermal/stationnary)

Stationary solutions→ Fixed points can be found in particular cases

Thermal equilibrium 

An in-plane component persists

(change of variable only possible if w1 = 0)



  

Fixed point stability in the Radiation Damping case (                         )
 F1 stable, F2 unstable



  

Fixed point stability in the case

F2



  

F2

Sustained masers are predicted when F2 is a stable focus

This can be observed in DNP experiments



  

Numerical investigations of the nonlinear Bloch equations
 in the presence of w1: Instability and chaos

When a constant radiofrequency field is applied,
much richer dynamics is predicted by the equations



  
Y=0.171 Y=0.17155 Y=0.174555

y



  

Transition to chaos of the nonlinear Bloch equations:
 period doubling and intermittency 



  

Liquid state experiments
controlled radiation damping 

 ambient temperature

 Long T2 and narrow line width ( ~ Hz)

 No efficient dipolar interactions between 
spins (motional averaging)

 « Large » magnetization ; low polarization ~ 
5.10-5

Solid state DNP experiments
 

 low temperature DNP (~ 1,2 K)

 Very short T2 and broad lines ( ~ 50 kHz)

 Strong local dipolar interactions

 «Huge» magnetization (hyperpolarization up to 
80-90 %)

Back to experiments...



  

Low Temperature Dynamic Nuclear Polarization experiments 

Liquid helium bath at T ~ 1,2 K

mw 
waveguide

NMR coils

One mechanism  of Dynamic Nuclear Polarization: the solid effect

e- spins : ~100 % polarized 
at 1.2 K



  

Low Temperature Dynamic Nuclear Polarization experiments 

Liquid helium bath at T ~ 1,2 K

mw 
waveguide

NMR coils

 Negative hyperpolarization:        
 « normal » feedback:          



  

Time-delayed representation of the DNP signal envelope
 In NMR experiments, only the transverse components of m are detected



  

Experimental masers can be qualitatively fitted 
by the extended Maxwell-Bloch equations

 mx and my are detected 
 mz is only reconstructed 

negative polarization DNP m0
st < 0x



  

Different experimental conditions give different observations

 sustained signal bursts upon mwave irradiation (repolarization)
 hour-long observations
 no damping of the maser bursts

Dynamics seem to converge to a limit cycle
… not compatible with the extended MB equations

 convergence to a regular, ~ periodic signal
 with a few irregular bursts0 5 10 15 20
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Similar observation in solution, at ambient temperature
 with electronic control of RD

Dynamics seem to converge to a limit cycle
… not compatible with the MB equations

 ~ periodic signal
 no damping of the signal bursts

 Thermal (positive) polarization
 controlled feedback:          



  

The failure of the model is due to a distribution of Larmor frequencies in the  sample 

 In solution, the main source of distribution of Larmor frequencies is the 
inhomogeneity of the static field

 At different locations in the sample, the spins have a Larmor 
frequency offset dw

 The feedback field is thus local, but each spin feels the cumulative 
effect of the local feedback fields

 The system is high-dimensional...



  

Failure of the simple Maxwell-Bloch equations is due to
 a distribution of Larmor frequencies in the  sample 

j
r
ij

q
ij

B
0

 Average dipolar field:
 The evolution depends on the ratio
 The spread of the z- component is the crucial ingredient

i

 DNP-polarized spins generate large dipolar fields 



  

Conclusions: chaotic signals in solution and in a hyperpolarized frozen solution

Chaotic signal in solution

Chaotic signal in a DNP-
polarized sample



  

Thanks!

Projet DynNonlinPol

Vineeth Thalakottoor (LBM, ENS/CNRS/SU)

Alain Louis-Joseph (LPMC, EP/CNRS)
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