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Algebraic evaluation of linking numbers of unstable periodic orbits in chaotic attractors
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An algebraic expression for evaluation of linking numbers of unstable periodic orbits in chaotic attrac-
tors is demonsirated. An illustrating example (horseshoe dynamics) is provided.

PACS number(s): 05.45.+b, 03.20.+i

Achieving a topological description of chaotic attrac-
tors is an important objective of nonlinear dynamics. In
the past few years several works have tackled this topic.
In particular, the idea has arisen that an attractor can be
described by the population of its periodic orbits, their
related symbolic dynamics, and their linking numbers [1].
The main concept in the topological theory of low-
dimensional chaos is the template introduced in the con-
text of hyperbolic flows by Birman and Williams [2]. The
template is a branched surface associated with a semiflow
whose periodic orbits have the same topological organi-
zation as the original flow.

In addition to the geometric view of a template, Mind-
lin et al. [1] describe braid templates by three pieces of
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algebraic data. The first one is a set of k integers, each
one given by the winding number (in multiples of ) of
each branch: they represent the respective local torsion
of the k branches. These integers are signed according to
the standard crossing convention [3] illustrated in Fig. 1.
The second one is a braid word describing the crossing
structure of the k branches of the template. The third
piece of data is the layering information, which gives the
order in which branches are connected to the branch line.

Melvin and Tufillaro [3] reduce this algebraic charac-
terization of a k-branch template to k Xk template ma-
trix by introducing a standard insertion convention:
branches are ordered back to front from left to right.
The linking matrix M is then defined by

M(i,i)=(the sum of signed half-twists in the ith branch)

= |M(i,j)=(the sum of the oriented crossings between the ith and jth branches) (i7#j).

A branch of a template is currently called a strand.
Each strand is associated with a letter of symbolic dy-
namics by using a first-return map from a Poincaré sec-
tion to itself. Therefore each band corresponds to a
monotonic branch of the first-return map. A band is
characterized by its local torsion whose parity is in agree-
ment with the slope of its corresponding monotonic
branch: a band with an even (odd) local torsion corre-
sponds to an increasing (decreasing) monotonic branch.
Therefore a band associated with an even (odd) letter is
called orientation preserving (reversing) [4]. In this Brief
Report we establish a relation to obtain linking numbers
from the template matrix and symbolic dynamics.

We recall that the linking number L(K,K,) between
two knots (periodic orbits) K, and K, is equal to the
half-sum of the oriented crossings between K; and K, in
a regular projection of the link (K,K,) (a drawing of it
such that no more than two lines cross at any point) [5].
Define a number e(p)==1 according to the crossing con-
vention for each crossing p (Fig. 1). Then the linking
number L(K,K,) is defined by

L(K,K;)=13 elp) . (2)
»
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1In like manner, the self-linking number of a periodic orbit
K, is defined as the linking number of the orbit with a
thin strip of its stable (or equivalently unstable) manifold
[s].

Let us now carry out a review of the different origins of
crossings between two periodic orbits of a template. Let
K, and K, be two orbits of respective periods p; and p,.
Their associated symbolic sequences are therefore of the
forms (0,05, ... »0p, yand (1,7 . .. ,1'1,2), respectively,
where o; and 7; are letters of the symbolic dynamics.
Let B, and B, be two bands associated with two letters k
and [ of the symbolic dynamics, respectively. Each band

a) b)

positive crossing negative crossing

FIG. 1 Standard crossing convention.
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has a local torsion equal to M(k,k) and M(L,]), respec-
tively, and they present M (k,]) crossings on a plane pro-
jection of the ribbon graph.

The linking number L (K,,K,) is equal to the half-sum
of oriented crossings due to (i) local torsion of strands, (ii)
crossings between strands, and (iii) crossings in the layer-
ing graph.

(i) Local torsions: We suppose that there exists an in-
teger i€[1,p;] and an integer jE€[1,p,] such that
o;=7;=k. Orbits K; and K, are then passing through
strand By and present M (k,k) crossings associated with
the couple (0;,7;) on a plane projection of strand By.

(ii) Strand crossings: We suppose that there exists an
integer i€[1,p,] and an integer jE[1,p,] such that
o;=k and 7;=I. Therefore when orbits K; and K, are
passing through strands B, and B,, respectively, they
present M(k,l) crossings associated with the couple
(o;,7;) on a plane projection of the ribbon graph (not ac-
counting for the layering graph).

(iii) Layering graph: Oriented crossings in the layering
graph between orbits K| and K, may be counted by con-
structing a layering braid. In order to do that, each
periodic point of orbits K; and K, must be located on the
lower and upper level lines of the braid.

First, periodic points of K, and K, are encoded by
symbolic sequences which are cyclic permutations
of the sequences (0,,0,,... ’01’1) and (74,75, ..., T, ),
respectively. For instance, the ith periodic point of K 1
is associated with the sequence (0,0;,,..., Op,s
Oy -..,0;—y). Periodic point symbolic sequences are
then ordered with respect to the natural order (k </ for
instance) [6]. This first arrangement permits one to ob-
tain the lower level line of the layering braid. The upper
level line is built up from the naturally ordered periodic
points on the lower line taking into account local torsions
and strand crossings. In order to do that, two rules are to
be applied.

Rule 1. If a strand B, has an odd torsion M (k,k),
the order of all periodic points (0130415 evn> Tp,s

Op...,0;_4) and (T)Tjgrs e »Tp +« - »Tj—1) such

)sz
that o, =7;=k is reversed. Let us note that, as a result
of the natural ordering, all periodic points o;=7;=k)
are gathered together on the lower line.

Rule 2. Let Sy be the set of periodic points
(010415 -« 10p 3015+, 0;—1) and (7,7 4y, ... 2 Tpy
T .- .»Tj—1) such that o;=k and 7;=k for i€[1,p]
and jE€[1,p, ], respectively. Let S; be the set of periodic
points (05041 OpsT1seeerTiy) and
(TjsTjags - - - »TpyT1y +--»Tj—1) such that o;=I and 7;=1

for i€[1,p,] and jE[1,p,), respectively, with kI, If
the sum of oriented crossings M (k,]) between strands B,
and B, is odd, sets S and S, are permutated.

The layering braid is afterward obtained by joining
each upper periodic point to its cyclic permutation iterate
on the lower level line. The layering crossing number
Niy(K,K,) is then evaluated by counting the crossings
between strings associated with orbits K; and K 2, Tespec-
tively. Due to the standard insertion convention, orient-
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Strand crossing

Layering graph

FIG. 2. Template construction of periodic orbits respectively
encoded by (10) and (101): the linking number L(10,101)=—2.

ed crossings on the layering graph are positive. The link-
ing number is then given by the following relation:

Py Py
L(K,,K2)=% S 3 Mo, 1)+ Ny(K LK) | . (3)

i=Ij=1

In like manner, the self-linking number is then given by
relation (3) with K, =K and p, =p,. Thus the layering
crossing number N, (K,K,) is equal to the sum of
crossings between strings of the periodic orbit KX, on the
layering braid constructed following the two rules and a
copy of these strings which represent the thin strip of the
unstable manifold.

Example

Let us choose a horseshoe map with the natural order
0<1. The increasing monotonic branch is labeled by 0
and the decreasing one by 1. The chosen linking matrix
reads

0 -1

M=\_1

. 4)

Let us now calculate the linking number of two period-
ic orbits encoded by (10) and (101). With respect to the
natural order as defined by Lin [6], we obtain the follow-
ing arrangement of periodic points:

(011)<(01)<(110)<(10)<(101) . (5)

Periodic orbits are then constructed on the template (Fig.
2).

The layering braid is constructed according to rules 1
and 2:

(i) The lower level line of the layering braid is given by
the natural ordering (5):

(011) (01)  (110) (10) (101)
So Sy

exhibiting two sets S, and S, associated with strands B,
and B, respectively.




101 10 11& 011 or
g /\l\i
011 01 110 10 101

FIG. 3. Layering braid of the link (10, 101).

(ii) Applying rule 1, only S, is reversed since M (0,0) is
even and M (1,1) is odd, leading to
(011) (01) (101) (10) (110)
So Sy
in agreement with the local torsion graph (Fig. 2).
(iii) Applying rule 2, sets Sy and S, are permutated
since M(0,1) is odd, leading to
(10%) (10) (110)  (011) (O1)
Sy So
in agreement with the strand crossing graph. This ar-

rangement forms the upper level line of the layering braid
(Fig. 3).
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_(iv) The layering braid is constructed by joining upper
periodic points to their respective cyclic permutation

itergtes on_the 1ower level line processing from left to
- right (Fig. 3). The constructed layering braid is topologi-

cally equivalent to the layering graph of the template

" (Fig.2).

“The linking number L (10,101) then reads

L(10,101)=1[2M(1,1)+3M(1,0)+ M(0,0)
+N;5(10,101)]
=1[—2—3+0+1]
=—2. (©6)

The linking numbers obtained from relation (3) are in
agreement with those determined by counting the orient-
ed crossings between (10) and (101) on the template. This
relation appears to offer theoretical and computational
advantages to obtain linking numbers from templates and
symbolic dynamics.
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