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The information contained in a scalar time series and its time derivatives is used to obtain a global model for
the underlying dynamics. This model provides a description of the time evolution of the system studied in a
space spanned by the time series and its successive time derivatives which is expected to be equivalent to the
original phase space. Differential models are, in general, very complicated and do not necessarily capture all
properties of the original dynamics. The possibility of choosing a form among an ansatz library for the original
system which allows a structure selection for the differential model is considered. It allows for the reduction of
the complexity of the model and the recovery of the right property when the differential model is transformed
back into the space associated with the ansatz.
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I. INTRODUCTION namical behavior closer to the original one with a simpler
model function[12].

Experimentally measured data series often have the form Nevertheless, although the differential embedding is ex-
of a single variable time seriegt) sampled at regular inter- pected to be equivalent to the original phase space which is
vals 7. In principle, it is possible to reconstruct phase spacgisually unknown, some characteristics of the original dy-
topological properties of the underlying dynamics from suchnamics are not always well reproduced when a phase portrait
a scalar time serigd]. Moreover, models obtained by global 'S reconstructed from a single time series. Such a feature is
modeling[2—4] can be superior to traditional linear model- Particularly true when the original system has certain sym-
ing methods such as ARMA models. The procedure to find &€ty Properties. For instance, the Lorenz sys[&sj gen-
global dynamical model in the form of a set of coupled Or_grates an attractor .Wh'Ch is globally mvangnt _under a rota-
dinary differential equations is often called the “dynamical tion _around thez axis. Whgn a reconstruction is attempted
) . starting from thex or y variable, the reconstructed attractor
inverse problem”[5,6]. In general, however, one has no

fior knowledae of the exact underlving variables of thePCSSESSeS an inversion symmetry which is quite different
brior wiedg X u ying varia .~ ~from the original ond14]. It is, therefore, of great interest to

) . C %pply a technique that would allow a description of the dy-
avaﬂgt_)Ie. In .thIS case, the estllmatlon of a global model CaMamics in a reconstructed phase space with the same sym-
be difficult, since one has no idea of the proper dimensionieqry properties even when only a single scalar time series is
ality or functional model form which may critically affect the nown.
estimation procedure. Nevertheless, it is important to use Qur aim is to use an ansatz library for structure selection
structure selection not Only to reduce the number of term$hat allows for the reduction of the Comp|exity of the ob-
involved in the estimated models but also to correctly selectained model and the recovery of some properties of the
their type, thus improving model qualify]. It has also been original dynamics. The ansatz corresponds to a chosen struc-
observed that when the right structure is selected, it becomagre for the original system generating the recorded time se-
easier to obtain a modé8]. ries. Using an embedding dimension equal to 3, we choose
When a differential model is attempted, all of the infor- an ansatz with respect to the coordingtey,2 which allows
mation is included in a model functioR constituted by a the inversion of the mapb: (x,y,z)—(X,Y,Z), where
multivariate polynomial depending on theég variables, (X,Y,2 are the time series itself and its successive deriva-
whered is the embedding dimensid8]. In such a case, the tives, respectively. The model functiofs referring to the
description of the dynamics is given in a reconstructed spaceecorded data have a structure corresponding to the afAsatz
the so-called differential embedding, spanned by the refrom the ansatz library. The adequate ansatz is identified
corded time series itself and itsl§—1) derivatives. The when a transformation back into the ansatz coordinates
number of terms involved in such a model function can bex,y,2 is possible. The applicability of such a procedure is
quite large(=~50). Since the obtained differential model may exemplified by using a library constituted by two different
be used to extract analytically some information about theansatz and two different data sets.
dynamical properties, it is rather important to reduce its The paper is organized as follows. In Sec. Il the global
length. In order to do that, a structure selection originallymodeling technique is presented as well as how to derive an
introduced in[10] has been recently adapted to the case ofinsatz library for structure selection. This method works in
differential modeld11]. It has been observed that the com- two steps: (i) estimating the functiofr with each ansatz of
plexity of the differential model may be reduced and its qual-the library and(ii) trying to transform the model back into a
ity improved, i.e., the parsimonious model generates a dymodel with the ansatz structure. The adequate ansatz is the
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one for which the transformation is possible. In Sec. Ill this du;
technique is applied to two dynamical systems, namely the Zi:W-

Lorenz and the Resler systems using two ansatz from the
library. The obtained models are then compared to the origia representation of the phase portrait is then given in a dif-

nal ones. Section IV is the conclusion. ferential embeddind?3(X,Y,Z). With such a set of coordi-
nates, a modeling procedure is applied to obtain a model
Il. GLOBAL MODELING TECHNIQUE from the recorded time serids;}' ;. Such a model reads
An approach for global modeling with structure selection X=Y

is introduced. The first step is to build an ansatz library. Each
ansatz represents a predefined structure for the differential ) N
model to estimate. Indeed, starting from a given ansatz, the Z=F(X,Y,Z,ay) =2 2 ayP,

second step to define the one and only restricted structure for

the differential model can be computed. Thus, from the anwherea, are the coefficients of the model functiénto be

satz library a differential model library is computed. The estimated andP, are the monomialX'Y/Z* [3]. The indices
second step consists of performing global modeling as usudl.j;K) for monomials may also be negative yielding a rational
[3,15] with each differential model. The third step is to selectmodel. System(3) is called thedifferential modeland its

the ansatz corresponding to an invertible map that allows ugarameters can be obtained by solving an overdetermined
to express the ansatz coefficients versus the model coefffystem ofN equations withN, unknown coefficients,(N
cients. Indeed, we assume that when this map is invertible>N,) reading as

the ansatz is close to the original system. The ansatz model is

®
i

Y=2 ©)

thus used to perform a better analysis of the dynamics. This Z, F(X1,Y1,Z9)
procedure will be detailed in the following way. The usual Z, F(X5,Y,,2Z5)
global modeling technique to obtain differential models is N : (4)
reviewed in Sec. Il A Section Il B is devoted to building the -ZN F(Xy,YnoZn)

ansatz library, and Sec. Il C explains how the structure of the
differential model is selected from the predefined ansatz, the}tn the method discussed
is, how to map the ansatz to the model in a very simple cas
The general case is developed in Sec. I D.

i3], this model function
?—(X,Y,Z,an) is obtained by using a Fourier expansion on
the basis of orthonormal multivariate polynomials generated
from the data set. A SVD procedure may also be preferred to
A. General approach solve this set of equations5]. The latter is used in this

The modeling method presented in this paper is applied t§/0TK-
systems whose dimensid@hof the original phase space is 3.
We limit ourselves to the cases where the embedding dimen- B. Ansatz library

siondg is also fixed to be equal to 3. Our method is based on  \yhen a differential model is attempted, the model func-
the global vector field modeling technique ir)troduced bYtion F(X,Y,Z) is usually estimated by using a polynomial
Gouesbet and co-workef8,9]. Very often the time evolu-  gypansion that involves a larger set of terms than required.
tion of all dynamical variables required for a complete de-the spurious terms increase the complexity of the model and
scription of the system studied is not known, and we cannOfjecrease its qualitity, i.e., the asymptotic behavior generated
recover the original set of differential equations. We usuallyby the obtained model may differ more from the original
know a single scalar time series, and only a global model igynamics. In order to avoid that, structure selection must be
obtained by using a reconstructed space spanned by coorjgrformed. Different techniques exist. One of them starts
nates derived from the recorded time sefie]. with a model function estimated on a full polynomial expan-
Let us consider a dynamical systemiii(u,v,w), sion up to a certain order and deletes spurious t¢f#k In
U="f(u,0,w) this paper we propose a quite different procedure. _Rather
. e than modifying or building a model structure for a particular
g=) v="a(uv,w). (D case, we start with different complete model structure, i.e.,
w=f3(u,v,w) the so-called ansatz library, out of which we choose the best.
Each ansatz is thus used for selecting the structure of the
Starting from a single time serigs;}.,, whereN is the  model function, i.e., for reducing the number of coefficients
number of points and;=u(t;), we obtain a set of indepen- involved in the estimated function.

dent variables by computing the derivatives In order to obtain a model with an adequate structure that
expresses the model equations in a form closer to the original
X.=u. one than the differential modé¢B), an ansatz library is used
I 1

to select a structure for the original system. The ansatz are

based on dynamical variablés,y,2 which may differ from
:% @) the unknown original dynamical variables,{,w). The an-
"odt’ satz are selected in order to be able to invert the coordinate
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transformationd® between the dynamical variablésy,2 on X =X
which the ansatz is built and the derivative coordinates _ly=

) ; : o= $1(xy) (7)
(X,Y,2 induced by the recorded time series. In the subse- Z= y(X,y,2)

quent part of this paper, the variable will designate the

observable in order to avoid redundancy, i.e., the systemMynere ¢,(x,y) and ¢,(x,y,z) are polynomial functions.
investigated will be rewritten in the form that the observablesjnce we would like to avoid terms with noninteger power

correspoan_to the first ordinary d_iﬁerential equation. like \X or other, the function,(x,y) must be linear iny,
Let us limit ourselves to the quite general dynamical syS{ o can be decomposed into two functions

tem equations
d1(X,y) =hy(X)+91(X)y, (8)

whereh,(x) may be a second-order polynomial ¥nSince
we limited ourselves to functionfs’s constituting the ansatz
=f,(X,Y,2), A as second-order polynomialg;(x) must be a first-order
polynomial inx and may have only two different forms,

X=agp+a;X+ayy+azz+ax>+asxy

+agXz+asy’+agyz+agz’

y=b0+ b1X+ b2y+ b32+ b4X2+ b5Xy gl(x): 71
, , €)

+bgxz+ by +bgyz+bgz g1(X) = 71X,
:fz(xyyvz)y (5)

where 7, is a real coefficient. Starting from E¢8) and
usingg1(x) = X" with ne Ny;<1, we obtain
Z=Cg+ C1 X+ Coy + C3Z+ CX°+ CsXY

B2(%,Y,2) = 201(X) +Y?g1(X)g1(X)
+yhi(x)g1(x)+yg1(x)hi(x)
+h(x)hi(x)

+CgXZ+ C7y?+ Cgy Z+ CoZ?

=f3(X,y,Z),

where the right-hand side is constituted by order two multi-
variate polynomials. There is no conceptual difficulties to

=x"fym+ X" y2 gy,

extend this approach to higher-order polynomial systems. +nx""tyn.hi(x)+x"y .07 (X)
This dynamical system is associated with the phase space .
spanned by the dynamical variablesy,2. By using the de- +h1(X)h1(x). (10

rivative coordinates, a phase space may be reconstructed and o .

a differential model3) can be obtained. Our objective is to USING similar arguments fog,(x,y), the functionf, must
use some ansatz, which are a subpart of the general@rm P€ linearinz, i.e.,

to select the structure of the differential model estimated f —h n (11)
from a time series. Since we do not knanpriori the exact 2%Y,2)=h2(X.Y) ¥ 92(x.¥)Z.

model form when we are faced with an experimental systemy

i ] he function¢, may thus be written in the form
we can only assume that it could correspond to a given an-

satz defined by a set of nonzero coe_fficier{jts,bj ,<_:k} Ho(X,Y,2)=nx2" " y2 0,2+ X"29,05(X,Y)
among those of the general for{). Starting from a given
ansatzA, the derivative coordinates can be expressed versus +nx""ty 1) +X"1h5(X,Y)
the dynamical variables involved ik according to the trans- , ,
formagien J XY 70 +hi0hy(0. (12
When g4(x) = 71, we have two possibilities fog,(x,y),
X=X which are
Y=1f1(X,y,z
® = 1(x.y.2) (6) 92(X,Y) = 75.
:a_flf +(9_flf +&_f1f (13)
ox Yoy 2 gz ¥ 92(X,Y) = 72X,

. . ) . and wheng,(x) = 1X, only g,(X,y)= 7, is suitable. When
This function must be invertible to express the ansatz COOM. (x)=0, the funcitonsg, and ¢, reduce to

dinates(x,y,2 versus the derivative coordinate$ Y,2. Such
an inverse maprJrj1 is required to express the function ¢,=x"yz,,
F(X,Y,Z) versus the ansatz variables. Most of the possibili-

ties should correspond to an invertible mép constituted =Xy 24 X291 95(X,Y) + N"7ha(X,Y). (14
by polynomial functions. The mag, is necessarily invert-
ible when it is restricted to be on the form In this case the functiog,(x,y) can take the additional form
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92(X,Y) 72y (19 y- Y
—yn
These three possibilities fay,(x,y) can be summarized as X 9
n-m-1,,2—p
gZ(X’y): 7]2mepzu 7= - ZP _ nx y 1 _ hrzn(X'y)
. XY mn2 72 xMyPn,
with
(16) We therefore have four different possibilities for the funciton
hi(x)=0: m,peNy; n+ms<l1, f1(X,y) = 70h1(X) + 7:x"y which are
hi#0: p=0;n,meNy; n,m=<1. no=1n=0m=a : fi(z,y) = ha(z)+
; : nw=1lLn=1n=a : fi(z,y) = hk(x)+
They andz variables are thus given as Ho=0,m=0.m =a : frl,y) =
Y_hl(x) 7]0:0771:17771:&5 : fl(‘r:y) =
X"y (19
ith
oz nX"y2p,  nyhy(x) "
TXXY) GaXy)  XG(xY) hy(x) =8+ ayx-+a,x?
ha(x,y)—yhi(x) h1l(x)hi(x) and three po.ssibilities fot functiorf,(x,y,z) =h,(X,y)
T oY) X mg(xy) *72X"y*2, which are
7 X112 o () (17 m=0,p=0,m=0b3 : falz,y) = halz,y) +|bs2
= - X””ll m=1,p=0,n=0bs : falz,y) = ha(z,y) +|bszz
e 7 72 m=0,p=1m=bs : fale,y) = halw,) +|bsy?
Chy(xy)  yhi() i (x)hi(x) (20)
XMy XM XM, with
and forh,(x)=0 they are ho(X,y) =bg+byx+boy+b,x?+bgxy+b,y?.

When these functions are combined with the functigrof the general ansai®), four different ansatz are obtained,

T = ag +a1:1:++a4x2

A1 =< g = by + b1z + byy + bax® + bszy + [ bexz |+ bry®

Z=co+ 1T+ oy +c3z+ c4x2 + csxy + cexz + 07y2 + cgyz + 0922 , (21)
T = ag +a1:c++a4a:2

Ay =13 4 =by+ bz + b2y++b4x2 + bszy + bry?

Z=co+ x4+ oy +c3z+ 04932 + csxy + cexz + c7y2 + cgyz + 0922 , (22
T = a0+a1x+a4x2+

A3 = q y = by + b1z + boy + bya” +bs-’ry++b7y2

i =co+ 1z + coy + c32 + 4 + 5Ty + CoTz + cry? + csyz + oz 23)

i:a0+a1x+a4x2+

Ay = ?)Zbo+blﬂ€+52y++b4x2+b5xy+byy2

z=co+ 1T+ coy+c3z+ 04332 + csxy + cexZ + c7y2 + csyz + 0922 . (24
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Note that the leading coefficients of the framed terms must be nonzero otherwise tie,nsapnot be inverted. Two other
ansatz are remaining. They correspond to the case vg3€rgy) is equal touy and read as

As = y:bo+b1x+b2y+b4x2+b5xy+b7y2+
z=cyp+c1x+coy+c3z+ C4x2 + sy + cexz + C7y2 + cgyz + C922

(25

Ag = y:b0+b1x+bgy+b4x2+b5my+b7y2+
z=co+ciz+coy+cesz+ caz? + csxy + cgrz + C7y2 + cgyz + coz?
The last two ansatz are less interesting than the first four co=b, c3=—C, cg=1.0.

because the functiorfy are very constrained.

This procedure may be extended straightforward to theI'he other coefficients involved in ans&z are set to zero

case of higher-order polynomial functiofigs as well as for _ . :
higher-dimensional systems. It may appear that other ansay_q'S reduced ansatz will be.de3|gnated as the a.l“s@lz't
ill be used only for introducing the method. In this case, the

could exist but no systematic way for generating them had/ di ¢ o~ ai . d
been obtained so far. We conjecture that they are very raré00rdinate transformatiob, given in Eq.(7) reads

C. Differential model estimation X=X
When a model is attempted from a scalar time series, only Do=1 Y= a1;<+ ay (29
a phase portrait reconstructed using the derivative coordi- Z=(ajt+azby)x+ajay+asbsz

nates can be obtained. The model is thus obtained by esti-
mating the functiorF(X,Y,Z) of a model of form(3). Inor-  gnd its inverse
der to avoid numerous terms in the estimated model

functionsF(X,Y,Z), its structure is selected to correspond to

an ansatzA;. For the sake of clarity, let us start with a X=X
simple case. _Y—a;X
" '!('he z'csslerhsystenﬁﬂc]j, one of the most simple systems Py l= y= a, (30)
at produce chaos, reads Z—a,b,X—a,Y
. 7=
u=—-—ov—Ww, a2b3

v=u+av, (26) It is clear in this example that the leading coefficiemjsand

b must be nonzero to define the inverse ndap’. Starting
from the reduced ams$z (27), it is possible to determine the

where @,b,C)=(0.2,0.2,35.0) are the control parameters.?xaCt model functiorFo(X,Y,Z). The exact model function

When thev variable of the Rssler system is chosen as the IS directly obtained by ComPU“T‘Q the derivative of the func-
observable X=v), the Rasler system belongs to ansatz tion ¢2(x,y,z) of Eq. (7), which is thus expressed versus the
when the coordinate transformatiorx,y,z)=(v,u,w) is ansatz coordinatex(y,z),

used. The ansat&, is thus reduced to

w=b—Cw+uw,

Fo(X,Y,2) =absco+a;(al+2a,b;)x+ay(ai+asby)y

T = a1z +[ay] +aybg(a+c3)z+abacgyz. (31)
Ad=09 =tz + It remains to transform the original coordinatésy,? by

_ using the inverted magbgl to obtain the model function
Z = ¢p+cCc32+cyz,

(27 Fo(X,Y,Z)=a;+ aX+ azX?+ a,Y
where + asXY+ agY?+ a2+ agXZ+ agY Z,
a;=a, a,=1.0, (32
b;=-1.0, bs=-1.0, (280  where
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TABLE I. Coefficientsa, of the model functiorF expressed versus the original coefficiefds,b; ,c,}.
The exact values, , and the estimated valu@g, and@,, are reported for ansatk, andA,, respectively.
In the case of ansat,, considered later, all of the coefficients not reported here are zero exgeplyg,

and a35 which are equal to 0.001.

n m Po.m an anm o, for Ay o, for A,
1 1 1 a,bscy -0.20 -0.1634 0.02
2 2 X —ayb,cy —35.00 —34.9880 —35.336
3 3 X2 a;b;Cq -0.20 —-0.2001 -0.207
4 11 Y ab,—a;cs 6.00 5.9972 6.067
5 12 XY aics 1.04 1.0397 1.064
—-—b,cg
Q
6 18 \& a,Cq —0.20 —0.2000 —0.205
&
7 27 z a;+Cs —34.80 —34.7877 -35.119
8 28 XZ a,Cq -0.20 —0.2000 —0.206
&
9 32 YZ Cg 1.00 0.9996 1.023
a
[ a;=asbsco The systemZ=F,(X,Y,Z) is solved by using a SVD
@y=—a,b;Cs algorithm. The estimated coefficients,’'s are reported in
Table I.
az=2a,0b,Cq The model obtained is quite close to the expected one,
az=ayb;—a;c3 i.e., the estimated functid?:o(x,Y,Z) is constituted of terms
a,2cq that have estimated coefficierids, very close to the exact
as=— —bcg valuesa,’s. In comparison to the general approach used in
2 [3], the ansatz approach allows us to reduce the number of
$o= a;Cg (83)  terms on which the functiofo(X,Y,Z) is estimated. Con-
46T e, sequently, it allows us a so-calletructure selectiorfor the
differential model. This is the first interesting point of the
ar=a;+Cs ansatz approach. Nevertheless, the plane projections of the
a;Cg differential mode[Figs. 1d), 1(e), and 1f)] have nothing to
ag="— a_2 do with the plane projections of the original er system
under the form of ansai&, [Figs. Xa), 1(b), and Xc)]. Such
agzﬁ a feature results from the fact that the derivative coordinates
\ a are coupled in a very different way than the ansatz variables

(x,y,2 are. However, since we assume an ansatz for the struc-
ture of the original system, an ansatz model can be obtained
The inverse of this map, will allow us to derive the ansatz using the inverse ma;pgl.
model from the differential model.

The «,’s are the coefficients which are to be estimated
when a differential model is attempted using the global mod- ) ] ) ]
eling technique described in the preceding section. In the Let us continue with our simple example. Equati@3)
present case, a differential model has been estimated by udefines a magp, between the ansatz coefficierits ,b; ,cy}
ing a time series numerically recorded at a sampling rat@nd the estimated model coefficie@tss. If this map can be
equal to 100 Hz and constituted of 3000 data points. All thenverted, the ansatz coefficients can be deduced and the dif-
data points are taken from a time series of ¢heariable of ferential model can be transformed into an ansatz model hav-
the Rasler system(26). For each data point retained, the ing the same form as the ansaig. Because only seven
derivatives have been estimated by using an interpolatiofO€fficients are present in the anségzand nine coefficients
polynomial. These interpolation polynomials are centered aty, in the estimated model functidrg(X,Y,Z), the problem
each point by using the nearest neighbors. Derivatives ars not fully determined. Three ansatz coefficierds, b,
obtained afterward by taking analytically derivatives of theseand cg, are not analytically determined since they are only
polynomials. Then, a vector constituted by theariable and involved in two linear independent equations. Nevertheless,
its three successive derivatives is retained regularly by 0.1 slue to a small departure in numerical values of the estimated

D. Ansatz model
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Original Rossler system in the form of ansatz Ag

400

350

400
350
300
250
200

150]

(a) zy-plane (b) xz-plane

A differential model

(e) X Z-plane

—60 ~-40 -20 0 20 40 60 —60 -40 ~20 4] 20 40 60 -60 -40 =20 0 20 40
x X y

(g) zy-plane (h) zz-plane

FIG. 1. Plane projections of the attractor generated by thesRosystem in the form of ansag with (a,b,C)=(0.2,0.2,35.0). Plane
projections of the corresponding differential model and the ansatz model are also shown.

(i) yz-plane

model coefficientsa,’s, we have, in fact, six numerically deed, the value of the control parametgronly affects the
independent equations for these three coefficients which castale of the dynamic0]. Thus, the attractor generated by
be obtained. Also, the ansatz coefficiebtsandc, are only  this ansatz model is topologically equivalent to the ansatz
involved in the single model coefficiert;. Consequently, system[Figs. Xg), 1(h), and 1i)]. This ansatz model has the
the problem is undetermined for these two ansatz coeffigreat advantage of presenting very similar plane projections
cients. When the map is inverted using a Gauss-Newton like that for the ansatz system, i.e., the couplings between the
method with a cubic quadratic line search procedure aslynamical variables involved in the ansatz model are very
implemented in Matlab, the two ansatz coefficidmjsandc,  similar to those present in the ansatz systém.

may vary significantly from one differential model to the ~ When more general ansatz are used, it may happen that
other. The coefficients of the best differential model are retwo differential models are successfully obtained from a
ported in Table Il. An error up to 70% is found for the ansatzgiven time series. In this case, the structure selection deletes
coefficientb;. The errors will induce a significant scaling in spurious terms and adds missing ones but the model func-
the variables without any other change in the dynamics. Intions are not sufficiently restricted to allow a clear identifi-
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TABLE Il. Estimated coefficientga; ,b;,c,} for the original  sion is possible for one of the two ansatz, one may conclude
Rassler system and for the ansatz model after inverting theggap  that the right ansatz is selected. It seems that there is a very
A significant error is found for the coefficients andc, since they  |ow probability for having two differential models built from
remain underdetermined. Nevertheless, these errors mainly affegfifferent ansatz which may be transformed back. This ansatz
the scaling of the variable but not the topology of the attractor.  jgentification will be exemplified in the next section.

To summarize, the chain of computations is as follows:
(1) Compute the coefficienus/;" from a given time series
Exact 0.20 1.00 -1.00 —1.00 0.2 —-35.0 1.00 for all ansatzA, of the ansatz library by using SVD and
Estimated 0.20 1.00-1.00 —-1.70 0.1 -35.0 1.00 differential models. For the next computation step, the values
Relative error 0.0 0.0 0.0 70% 50% 0.0 0.0 a;\“ for each ansata, are used.

(2) In order to check which ansatz is adequate, try to
invert each mapy, for computing the ansatz coefficients
cation of the best ansatz. This can be done when the diffefa; ,b; ,c}. Only ansatz which are appropriate to the time
ential model is transformed back into a model built with theseries used allow us to solve the inverse transformagion
same variables like those involved in the ansatz. The The relationships between the different spa@es, the
{a;,bj,cy} coefficients are thus expressed by inverting theoriginal phase space, the ansatz space, the differential em-
map ¢ using a Gauss-Newton method with a cubic quadratidedding, and the space associated with the differential
line search procedure as implemented in Matlab. If an invermode) used in this paper are summarized in Fig. 2.

a a b, bs Co C3 Cg

Original phase space Ansatz phase space

unknown original

. A ansatz coordinates
dynamical variables

w ui:g] (u,v,w) z x=f1 (x,%.2)
V=g (wy,w) equivalence ? y=h(xy.2)
w=g (u,v,w) = (x3,2)

X
Observable
il ey
= il i
orw I | | oo
AN
Differential embedding Phase space of the differential model
estimated
derivative coordinates
z derivative coordinates z .
equivalence X=Y
S b Y=2
Z=F(X,Y,Z)

FIG. 2. The original phase space is unknown. Only a scalar time series is recorded. Usually, the observable is considered to be one of the
dynamical variablesu,v,w) from the original phase space. Starting with this observable, the derivative coordinates are computed to obtain
a differential embedding. This is the single representation of the attractor that can be directly extracted from the data. Thus a differential
model is attempted using the derivative coordina®sr,Z. The integration of the estimated differential model induces a phase space
spanned by the model derivative coordinatesy,2. In this paper these coordinates are not distinguished from the derivative coordinates
directly computed from the experimental time series. In order to impose a structure selection on the model F§XcioR), an ansatz is
assumed to match with the dynamics underlying the original dynamical variablesM). The coordinate transformatio®: (x,y,z)
—(X,Y,Z) between the ansatz phase space and the phase space of the differential model must be invertible to allow the transformation of
the differential model into a model in the ansatz form. But numerically, it is in fact thegnap(«,)— (a; ,bj ,cy) which is inverted. This
is possible until the leading coefficients are not equal to zero. When this is observed, one may expect that the ansatz phase space and the
original phase space are very close.
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60.0 T 60.0
400 + 400 F
20.0 200
S 00 | > 00t
=200

-200 F

~40.0 + ~40.0 +

-60.

~60.

FIG. 3. Chaotic attractors gen-
erated by differential models esti-
mated with ansatzA; and A,
when thev variable of the Rssler
system is the observable.

0 " < " " . 0 "
~70.0 ~50.0 =300 -100 10.0 300 50.0 =700 =500
X

(a) A, differential model

IIl. NUMERICAL APPLICATIONS

A. Rossler system

-30.0 ~10.0 10.0 30.0 50.0
X

(b) Ay differential model

is computed. The three branches observed on the first-return
map of the exact differential modéFig. 4(a)] are only re-
produced by the differential model associated with ansatz

Two quite different original systems are used as tesi,. Moreover, the differential model associated with ansatz

cases. First, we consider the $ter systen{26). When the

A1 is numerically unstable and only a metastable chaotic

observable is thas variable, the Rssler system does not behavior is observed before the trajectory escapes to infinity.
belong to any ansatz identified for second-order polynomiairhe differential model associated with ansAtzgenerates a
functions. Thus, following the procedure previously devel-limit cycle after a transient regime. At first sight, one may

oped, no invertible coordinate transformatidrbetween an-
satz coordinate$x,y,2 and derivative coordinatedX=x, Y
=X, Z=X) can be obtained. The case of thevariable is a

conclude that the dynamical behavior associated with the
ansatz model may be very different from the one generated
by the original Resler system. But the limit cycle corre-

little bit different. When the ansatz coordinates axey(z) sponds to a periodic window which is very close to the origi-
=(w,v,u), the Resler system may be rewritten in the form nal chaotic behavior in the bifurcation diagram of thesBler

of ansatzA,. Thus, the corresponding model function system. Such a departure may result from a slight change in
F4(X,Y,Z) is constituted by 35 monomials. This model the control parameter values and may be quantified by in-
function is not reduced very much and no differential modelspecting the symbolic sequence of the last created periodic
has been obtained from thevariable of the Resler system. orbit which is (202001) for the original Rssler system and
Obtaining a three-dimensional differential model from this (20201) for the ansatz model. Whénand C are kept un-
variable is a great challenge. So far, no three-dimensionalhanged, it corresponds to arvalue equal to 0.197 rather
differential model has been obtained using a general polynahan 0.200. Such a slight departure for the control parameters
mial expansion3]. It has been shown that such a feature(jess than 1.5%is a natural consequence of the application

results from a lack of observability of the dynamics when theof an estimation algorithm to data records that include nu-
w variable is used21]. Nevertheless, when a rational func- merical errors.

tion is used with the right denominator selected with a fixed A definite selection of ansata, is done by trying to
point identification, a three-dimensional differential modeljnyert numerically the mag. Only the mape, associated
can be obtaineB]. In our case, it seems that the ansaiz  jith ansatzA, can be inverted. Indeed, the mag is not

is still too general to allow a successful differential model.jnyertiple because the leading coefficients, and bg, in-
Further investigations are postponed for future works. volved in ansatzA, are equal to zero and, consequently,

_When v is the observable, the Reler system may be mply divisions by zero. As expected, only ansatz is ad-
directly compared to the ansats for which all coefficients  gquate for modeling the-induced Rssler attractor. The an-
are zero except those involved in ansAzwhich is a sub- g5tz model reads

part of ansatA\,. A, is therefore the right ansatz for describ-
ing the Resler system. In order to check whether our
method is able to select it, we try to obtain differential mod-
els using ansata,; andA,. Although differential models can
be obtained by using both ansdEig. 3), they are not of the
same quality. Indeed, the obtained model with the wrong
ansatz[ansatzA;, Fig. 4a)] generates a chaotic attractor
which is less developed than the one obtained with the ad-
equate ansatansatzA,, Fig. 4b)]. This is observed more
clearly when a first-return map to the Poincaeztion

X=26.4534+0.051%+8.537%,
y=0.4573-0.116%+ 0.147¢/—0.000%,
z=-0.4414-8.889k — 18.0548 — 8.546Z

—0.139X2+ 2.7345%y— 0.148 X z+ 7.005%°
+8.537%z+0.000G7.

(35

Extra terms are involved in this ansatz model. They result
from the extra terms involved in ansaz. Nevertheless, the
chaotic attractofFigs. 1g), 1(h), and Xi)] generated by the

P={(Y,,Z,) € R¥X,=0X,<0} (34)
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-20.0

=300
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-50.0 -200

(a) Exact differential model

-200

-300

-400

-500

-60.0

-60.0

-50.0 -40.0 =300 =200

(b) Ay differential model

-200
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=300

Y.

=500

-60.0

~60.0

~50.0

-40.0 -30.0 -20.0

(c) A, differential model

FIG. 4. First-return map for the exact differential model derived from thesRo system and for the two differential models obtained
with the two different ansatz. Trajectory may be encoded according to the generating partition defined by the two critiog} @oidts, .
Symbols 0, 1, and 2 are associated with the increasing, as well as the decreasing and increasing, branches, respectively. The bad quality of
the A, differential model is characterized by the absence of the third monotonic branch on the first-return map.

ansatz model presents the same orientation in the spawoeodel are rescaled due to the departure observed for the
(x,y,2 as the original Rssler attractor in the original phase estimated control parametbr (See Fig. 5.

space spanned byi(v,w). This can be checked by compar-
ing Figs. 1a), 1(b), and 1c) with Figs. 1g), 1(h), and Xi).

This means that the couplings between dynamical variables
(x,y,2 are very similar to the couplings between the original
dynamical variablesu,v,w).

The quality of the ansatz model is confirmed by its first-
return map which compares favorably to the first-return map
computed for the original Resler systeniFig. 4@)]. The
original first-return map is equivalent to the one computed
for the differential model. As observed for the differential
model, the first-return map associated with the ansatz model
is not very well visited. In fact, the ansatz model generates a
limit cycle after a transient regime as observed for the dif-
ferential model. Therefore, the dynamics is preserved under
the transformation back to the phase spdex,y,z) and the
model now has the great advantage of presenting couplings
between the dynamical variables which are similar to those s
between the original dynamical variables,§,w). where Gz,.a,b.):(28.0,10.0§) are the control parameters.

The ansatz model captures the right properties of the dyPIane projections of the attractor generated by this system
namics. Although the variable of the ansatz model evolves are displayed in Figs.(8), 6(b), and &c). Since we know the
within the same range as the variable of the original original equations, we can check that whers the observ-
Rossler system, the other variablgsand z) of the ansatz able, the Lorenz system corresponds to anéatwith

B. Lorenz system

The second test case is the Lorenz sysit&8j reading as

Uu=—ou+ov,
V=RU—v—UW,

(36)

w=—bw+uv,

j 1100000.0
900000.0

700000.0 |

00
w 500000.0

250
3000000 |

-50.0 100000.0

780 b e
-1

L ~100000.0
10 -85 =

—10:0 =75 750 -50.0 =250 50.0
X X y

0.0 250

(a) yz-plane (b) zz-plane {c) yz-plane

FIG. 5. Plane projections of the attractor generated by the ansatz model obtained fromvatiable of the Resler system by using
ansatzA,. The scales of the variabléz,y,2 are different from those for the Reler system due to the departure for tevalue.
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Original Lorenz system

50.0 T 500
225
40.0
125
30.0
25 F
> Y
75 200
-175 F “ 10.0
=275 00 + 00 L
-20.0 ~20.0 -10.0 00 100 200 -30.0 ~20.0 -10.0 00 10.0 200 300
u v
(a) uv-plane (b) uw-plane (c) vw-plane
Differential model
1500 T - 30000 3000.0
20000 @ 20000 F
50.0 4 10000 | 1000.0
o N 00 N 00
-50.0 -1000.0 ~1000.0
-2000.0 ~2000.0
1500655 100 00 100 200 00000 T 00 100 200 000500 oo 500 1500
X X
(d) XY-plane projection (e) X Z-plane projection (f) Y Z-plane projection
Transformed model
250.0 T 2500
225
200.0 2000
125
150.0 1500
2.5
> EN] ~
s 100.0 1000
175 500 500
2 f20.0 0 92l'),0 —I;).O 0.0 10.0 200 01—)25.0 ~15.0 -5.0 50 150 250
X y
(g) xy-plane projection (h) xz-plane projection (i) yz-plane projection

FIG. 6. Plane projections of the attractor generated by the original Lorenz system, the differential model obtained usiAg aardtz
the ansatz model. The right symmetry properties are recovered for the ansatz model.

a,=—o, a,=o, but not to ansat?,. In the former case, we have,f,z)
=(u,v,w).

bi=R, b=-1, be=1, (37) Since the exact form of the Lorenz system is known, the

cs=—b, cs=1. exact model functioriF| reads
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17.0 T T T T T T T 15.0
16.0 .
140 | "
2x
15.0 ;$
130} FiA
140 ':‘}‘%.
130 T 120
= X
12.0
11.0 L
110 \ e
g N 100 s,
10.0 ; L]
50 oo 00 . . . . .
9.0 100 110 120 130 140 150 160 170 9.0 10.0 11.0 120 13.0 14.0 15.0
o] x|
(a) Original Lorenz system (b) Transformed model

FIG. 7. First-return maps for the Lorenz case. The map associated with the ansatz Lorenz model exhibits slight departures from exact
symmetry which induce a significant thickness.

FL=asX+ a5x3+ aY + a13X2Y Its numerical integration generates a chaotic attradtags.
6(g), 6(h), and Gi)] which may be favorably compared to the
original Lorenz attractor displayed in Figs(ag 6(b), and
6(c). Thex ory variable generates time series with symmetry
properties while the variable is clearly invariant. This is an
according to ansat?d;. One may remark that this exact important result since by using derivatives, delay coordi-
model function is constituted by seven terms rather than 3Bates, or principal components, the reconstructed attractor
for the model functiorF, associated with ansaik;. There  always possesses an inversion symmetry whesr v are
is a cost to pay for these additional terms since they willused as the observable while no symmetry is observed when
slightly affect the quality of the model as will be discussedw is used as the observall&4]. The ansatz model, there-
later. fore, has the great advantage of generating a phase portrait
Two differential models of the fornB) are obtained with that has a rotation symmetry as observed for the original
ansatzA; andA,, respectively. For instance, plane projec- phase portrait. Using an ansatz allows one to select the ad-
tions of the chaotic attractor generated by the differentiakquate model structure and to recover the exact symmetry
model with ansatZ\; are displayed in Figs.(6), 6(e), and  properties. One may remark that a rotation symmetry, has
6(f). The model function is constituted here by 35 termsbeen recovered when starting from a single time series while
rather than 18 as obtained [i]. The great advantage of the two time series are required by using usual approaches
model function is that it has a structure which is equivalen{18,19.
to those of the exact model functi®h , while the estimated The ansatz modéB9) is not exactly equivariant. Indeed,
model function by using a polynomial expansion has notextra terms required by the ansa#iz asa,, a;x* or b,xy
One may observe the large departure from the original attracnd other even order monomials involvimgandy slightly
tor displayed in Fig. 6. Indeed, the couplings between thelestroy the equivariance sinéeandy can no longer be
derivative coordinates are clearly different from the cou-changed into—X and —y by applying &,y,z)—(—x,
plings between the original dynamical variablas,u,w). _—)_/,z). These extra terms have_ low effects When_the system
The symmetry of the differential model is an inversion sym-iS integrated as displayed in Figsigh 6(h), and &i). The
metry with respect to the origin of the differential embeddingth'Ckness of a fw;st-return map eXh'b'FS this .Sl'ght departure
rather than a rotatiofd4]. from symmet'ry(F|g.. 7). It could be avmdeq with a restnc;ed
Only the differential model associated with the angitz ansatz only including odd terms in the first two equations,

can be transformed into an ansatz model of the form .., by deleting terms asspcia’_[ed Wm’. by, b5.’ andby
from the ansatz before estimating the differential model.

Y? YZ
+C¥187"‘01262+ a3z (39

X=—1.799-22.605+ 21.65( + 0.001?, When thev or w variable is the observable, no ansatz
models can be obtained with the ansatz library introduced in
y=—0.961-0.300«+ 11.61% — 0.100«? Sec. Il

+0.10ky—0.160z+0.026/2,
IV. CONCLUSION

z=—13.811+ 15.51&—3.494/— 2.5527+ 0.37%° Modeling dynamical systems starting from a scalar time
—1.445y—0.15%z+ 3.748/2—0.008/ series is an important subject of research. Most of the models
obtained involve polynomial expansions with a large number
—0.00122. (39 of coefficients and the structure of the model equations can-

016206-12



ANSATZ LIBRARY FOR GLOBAL MODELING USING A.. .. PHYSICAL REVIEW E64 016206

not be used to understand the couplings between the differenf the Lorenz system have been recovered starting from a
dynamical variables required for a complete description ofcalar time series. The first attempts to adopt this method for
the state of the system studied. With the aid of an ansatmoisy time series has been postponed for future research.
library, it is possible to reduce the number of terms involved
in the model function when its structure is adequate. More-
over, when the original system presents a symmetry, the dif-
ferential model cannot be characterized by the same symme- We wish to thank Luis A. Aguirre for helpful discussions
try except if the symmetry of the original system is anand Irina Gorodnitsky for encouraging this project. This
inversion. We have shown that using an ansatz library maproject was supported by an AMADEUS program between
allow us to obtain an ansatz model that has variables whiclAustria and France and by NSF Grant No. 11S-0082119.
present couplings very similar to those observed for theC.L. was at the Institut fur Theoretische Physik in Graz,
original system. For instance, the right symmetry propertiefustria, when most of this work was done.
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APPENDIX: COMPUTATION OF MAP ¢, FOR ANSATZ A,

In this appendix the code used WMTHEMATICA for computing the map between the ansatz coefficieat’s and the
model coefficientda; ,b; ,c,} is given for ansatA,. Other cases can be easily computed from this code.

General procedure to generate the functiond;

MatricesAA, BB, andCCcorrespond to the ansatz functions f,, andfs, respectively. The matrix indices are shifted by
1. For instance, in matriAA, the indices 2 and 3 correspond to coefficiesmisanda,, respectively,

Q={1xtly[t].Zt] x[tIx[t].x[t]y[t], x[t]z[t].y[t]y[t].y[t]z[t].Z[t]Z[t]},
AA=FlatteriTablg {a;},{i,0,Lengthi Q] — 1}1],
BB=FlatteriTabld {b;},{i,0,Length Q] —1}1],
BB=Flatteri Tablg {b;},{i,0,Length Q] — 1}]],
CC=Flatteri Tablg {c;},{i,0,Length Q] — 1}]],

T=AAQ;T=T[[{2,3]]:f1=Apply[Plus]T],
T=BBQ;T=T[[{2,4]]:f,=Apply[Plus],
T=CCQT=T[[{1,4,9]]:f3=Apply[PlusT],
ar x[t]+ap y[t],
by x[t]+bs Z[t],

CotCzZ[t]+cgy[t]Z[t].

Computation of Z
replxyz  ={x[t]—x,y[t]—Yy,Z[t]—2Z},
g1=x[t],

go=SImplify[ (dy91) F1+ (dy1191) F2+ (9491) 3],

g3=SImplify[ (dy192) f1+ (dy1192) F2+(9592) 3],

Zdot=Simplify[ (dy1193) 1+ (dy1193) 2+ (971193) 3],
0.=0./.replxyz, g,=g,/.replxyz , gz=gs/.replxyz ;

Zdot=Zdot/ .replxyz

S=FlatteSolvd {g;==X,0,==Y,09;==2Z},{x,y,2} 1],
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Zdot=Expandhll [Zdot/S].

Extraction of the monomial list from the expression for Z

repl=FlatteriTabld {a;— 1,b;—1,c;—1},{i,0,Length Q]}1];
QG- ExpandAl[Simplify[(Zdot/.rep))]];
QQ& Tablg 0i,1,LengthQQJ}];L=QQ
Folj=1,j<Lengtf QQ,j+ +,
IffNumbe QQ[j]]]= = False,
Folk=1k=Lengtf QQ[j]]1].k+ +,
IfLNumbe QQ[j,k]]1]==True QQQj 1]+ =QQ[j k]1];

I
QQQj 11+ =QQ[j]l;
I

LI[i 1)/ =QQqj]T;
L=TablgL[[i]],{i,1,LengthiL]}],
{1.X,X2Y,X,Y,Y2,Z,X,Z,Y Z}.
Extraction of the coefficients a, from Z using the monomial list
Coeff=Tabld 0{i,1,LengtfiL]}];
pp=LengtiL];
Fofj=LengtfL],j>0,j——,

If[ Numbek L[j]]/.repl]==False,
Fofk=1k=<LengtfLZ] k+ +,
CO=CoefficienfLZ[[k]1,L[[}]11];
IffNumbeQ[CO .repl]= = True,Coeff[j]]+ =CQ]
I;
=1
I;

I;
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Coeff [ jj 11=ExpandAl[Simplify[ Apply[PlusLZ] — Apply[PlusL Coeff]]].

Listing of the transformation ¢
Fofk=1k=<LengtHL],k+ +,Prinf a_ ,k,=Coeff [k]]];
a_l=a,bsCy,
a_2=—ayb,cj3,
a_2=—ayb,cj;,
a_3=a;bcg,

a,4=a2b1—a103,

2
ajcg
a_5=———D;Cg,
a

a;Cg
a_b6=———,
az
a,7=al+ Cg,
a;Cg
a_8=———,
ax
Cg
a_9=—.
ar
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