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Outline :
Four compartment model of epidemic spreading via random

walkers on a 2D lattice. Infected walkers infect susceptible walkers.
Constant population, no mortality.
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Part |I: Compartment epidemic model with retarded transition rates
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Figure: Colors of indicate health status S | R of the walkers. Left: One infected walker at

t = 0. Right: State of epidemic spreading t > 0.

e Z > 1 random walkers navigate independently on a N x N
square-lattice, jumping with probability 1/4 to any of four neighbor
lattice points

e Each walker is in one of the states (‘compartments’)

S : susceptible (for infection)

: incubated, infected but not in-
fectious
| : infected and infectious

: recovered and immune



Simple random walk

Z walkers navigate independently on a periodic 2D lattice.
Position of walker j (j =1,...2)

xi(t) =x(t—1)+19(t)

yi(t) =yt — 1)+ (t)

random steps

( 9)(t),nY (t)) = (1,0); (—1,0); (0,1); (0,—1) with probability %.

Microscopic model for Brownian motion (Feller1968).




Four compartment SCIRS model

Infection rule :

If S meets |, i.e. in a collision of an | with an S walker
the S walker gets infected with probability P;,r
performing the delayed transition pathway

S » —=S1—-R=>S

with random sojourn times tc, t;, tg in the compartments

drawn from probability density functions

P(tc,/,R € [7‘,7‘ + dT]) = KC7/7R(7‘)d7‘



Macroscopic SCIRS evolution equation

Population fractions
s=2Zs(t)/Z,c=2Zc(t)/Z,j = Z(t)/Z,r = Zr(t)/Z

constant population s(t) + c(t) +j(t) + r(t) =1
Macroscopic S — C — | — R — S evolution equations:
ds(t) = —A(t)+ (At — tc — t1 — tr))
sc(t) = A(t) — (At — te))
S(t) = (At - tc)) — (At — tc — 1))
Zr(t) =(A(t—tc—t1)) — (At — tc — t; — tr)).

A(t) infection rate = collision rate x probability of infection in a
collision S and | (contains microscopic information on the type of
random walk).

t = 0 begin of observation, A(t) causal



Macroscopic SCIRS model
Averaging over random variable tc j g:
o0
(Flicsr)) = [ F(DPltcsr € lr.7+dr]
0

= /000 f(r)Kc,1,r(T)dT

Average of retarded causal infection rate

(A(t— tesg)) = /0 " A(t — K R(7)dr

/Ot A(t — T)KC,I,R(T)dT = (KC,I,R * A)(t)



Macroscopic SCIRS model

Averages of causal randomly retarded infection rate
tc1,r mutually independent random variables
(0(t — tc1,Rr)) = Ke,1,r(t)
t
(O(t — tcir)) = / Keir(T)dr
0

<A(t — tc — t/)> (KC * K| *A)(t)
<A(t —tc—t — tR)> (KC * K| % KR*A)(t)

Laplace-transform
o
KC,I,R()\) = <e_>‘tc”’R> = / e_T)‘KC7/7R(T)dT
0

<e—)\(tc+fl+tR)> = KWKV Kr(N)



Four compartment SCIRS model

— Evolution equations s(t) + ¢(t) +j(t) + r(t) = 1 (constant
population without deaths) for arbitrary waiting time distributions

%s(t) = —A(t) + (Ax Kc x Ki = Kg)(t)

%c(t) — A(t) - (Ax Ko)(8)

%j(t) — (Ax Ke)(t) — (Ax Ke x Ki)(2)

%r(t) = (Ax Kc* Ki)(t) = (Ax Kc x Ky = Kg)(t)

A(t) infection rate, assumption: A(t) = 3j(t)s(t) simplest form of
nonlinear function of j(t) and s(t) describing probability of collision of |
and S walkers.



Endemic equilibrium in the SCIRS model

SCIRS Egs in Laplace domain with initial conditions s(0) =1 — jp,
c(0) =0, j(0) = jo. r(0) =0

s = 1—jo A0 [1 = Ke(W)KI(M)Kr(V)]

A X\
e\ :A(A)(l—fc(A)
0 = JXO + .%Al()\)i%c()\)(l_f’o‘)
70) :A(A)RC(A)R,(A)(l—fR(A)

Endemic equilibrium: f(o0) = /{imo)\i?()\)
—
with A(X) ~ 222 (X - 0)



Endemic equilibrium for waiting times with existing mean

For (tc;r) < oo we get for the endemic equilibrium

Se(Je) 1+16<JO>J

Ce(Je) :w

= =fo+6<r,>JeH1g<¢J>k 2)
Re(Je) :W'

The third relation in (2) is an implicit equation for Je
J22—2a).—b=0 (3)
Only roots Je € [0, 1] correspond to an endemic equilibrium.



Endemic equilibrium for waiting times with existing mean

Jo
Figure: Endemic value Je(jo, Ro) vs jo for different values of Ro3(t;) > 1 where in all curves

(tc) = (tr) = 5, (tr) = 20.

Monotonic increase of J. with jo and Ry especially
Je(jo =1, Ry) = 1 is a stable endemic equilibrium point.



Endemic equilibrium for waiting times with existing mean

For globally healthy state jo = 0 and sy = 1 initial condition the
endemic equilibrium yields

1

Se =&

_ Ro—1{(tc)
o Lo T R
} :RO_]_@ < >—<tc+t/+tR>, 0—ﬂ<t,>
€ Ry (T)

_Ro—l(tR>
“ TR M

and exists solely for Ry > 1 depending only from Ry and the mean
waiting times (tc  gr).



Stability analysis

Epidemic spreading requires:

(i) Unstable globally healthy state (unstable fixpoint)

(i) stable endemic equilibrium (stable focus) — Stability analysis:
s(t) = Se + uett,  c(t) = Co + vett,

J(t) = Je + wett,  r(t) = Re + xett

u,v,w,x ‘'small’ time independent constants.



Instability of globally healthy state

Solvability condition
ji = Roe "1 —e7F)
If there is an R > 0 then heathy state is unstable.

This is the case for Ry > 1 which is the condition that a SCIRS
epidemics starts to spread.

Instability of healthy state

Y@

0.0 0.5 1.0 15 2.0 25

Figure: We depict g(fi, Ro) = Roe #1(1 — e~#) for different values of Ry. For Ry = 0.9 (lower
curve) the healthy state is stable. In the other curves Ry > 1 the healthy state is unstable. In all
plots we chose t; = tc/t; = 0.5.



Stability analysis of healthy and the endemic equilibrium

Interpretation of Ry = [(t;) as basic reproduction number:

Average number of new infections caused by the first infected
walker during his illness period (¢;).

Heuristic deduction:

Consider initial condition jo = Landsg=1 — Jjo of one infected
individual Z;(0) = joZ =1 in a healthy, i.e. susceptible population
Zs(0) = soZ = Z — 1) the the rate of new infections caused by the
first infected walker is

dZc( Z—-1
dt }t o = ZBs(8)i(t)],o = gZS(t)Z,(t)\t:O =p=——

which is the number of new infections per time unit at t = 0.
During the average time (t;) of his disease, this walker causes

Ro ~ ch(t |t o{tr) = B(t;) new infections.

— 5,




Implementation oF SCIRS random walkers — (PYTHON) simulations
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Average population fractions over 10 random walk realizations with
Z =100, N = 11 (density Z/N? ~ 0.83), P;,s = 0.9 and Gamma
distributed waiting times having the means (tc) =5, (t;) = 10,
<tR> = 35, 5(; =0.1, f/ =0.2, §R =0.3.

Animation 1



http://bitly.ws/EjVc

Implementation oF SCIRS random walkers — (PYTHON) simulations

Compartment fractions averaged over 10 random walk realizations
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(a) o-distributed, (b) exponentially distributed waiting times

with Z = 150, N = 21 (density Z/N? =~ 0.34), P;,s = 0.9, mean incubation time
<tc> =10, <l’/> = 100, <tR> = 50.

Endemic states (dashed lines) for (a) -distributed waiting times: Se ~ 0.10

(Ro ~ 9.68), Ce =~ 0.06, Je ~ 0.56, Re ~ 0.27, and r¢ =~ 0.07, r; ~ 1.00, rg = 0.98.
Endemic states (dashed lines) for (b) exponential waiting times: Se ~ 0.16

(Ro = 6.01), Ce =~ 0.06, Je = 0.52, Re ~ 0.26 and rc ~ 1.07, r; = 1.00, rg =~ 0.98
In all simulations excellent agreement of Se, Ce, Je, Re with Egs. (12)!

Animation 2


https://drive.google.com/file/d/1tU5e_Q1fNXM255f06CcHmJC1CKJytHZW/view

Animations of SCIRS epidemic evolution
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Figure: (a) d-distributed waiting times with Hopf unstable oscillatory behavior
(b): All waiting times are Gamma distributed where means are identical with those of (a).
(c) Numerical solution of the macroscopic SCIRS Egs. with same parameters as in (a).

Animation 3

Good agreement with the averaged microscopic behavior.


https://drive.google.com/file/d/1waRogl-SV4XZWEp8A3KFt_IpwmIHsMQ3/view

Effect of confinement measures

Confinement of a fraction of | walkers during 90% of their illness time (tconr = 0.9¢;)

0% confinement of il population 40% confinement of ill population 60% confinement of ill population
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e For animated simulations, further details and download of these slides consult:

https://sites.google.com/view/scirs-model-supplementaries/accueil

Thank you very much!


https://sites.google.com/view/scirs-model-supplementaries/accueil

