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Abstract

For many systems it is advantageous if analysis and modeling can be accomplished from a scalar time series because this greatly

facilitates the experimental setup. Moreover, in real-life systems it is hardly true that all the state variables are available for analysis

and modeling. Since the late 1980s, techniques have been put forward for building mathematical models from a scalar time series.

One of the objectives of this paper is to verify if it is possible to obtain global non-linear models (non-linear differential equations)

from scalar time series. Such data are obtained using a model of biochemical reaction with aperiodic (chaotic) oscillations as recently

observed in the case of a glycolytic reaction (Nielsen, K., Sorensen, P.G., Hynne, F., 1997. Chaos in glycolysis. J Theor. Biol. 186,

303–306.). The main objective, however, is to investigate which state variable is more convenient for the task in practice. It is shown

that observability indices seem to quantify quite well which variable should be preferred as the observable. The validity of the results

are established performing rigorous topological analysis on the original system and the obtained models. The influence of noise,

always present in experimental time series, on the dynamics underlying such a system is also investigated.

r 2004 Elsevier Ltd. All rights reserved.
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I. Introduction

When a biological, or more precisely a biochemical
reaction is investigated, the complete knowledge of the
states of the reaction may require the measurements of
concentrations of all the interacting chemical species. To
accurately measure the time evolution of a single species
is already a great challenge and usually recording the
entire set of state variables is not practically viable.
Fortunately, to record a single species is often not a
problem. One of the most interesting results in non-
linear dynamical system theory is that the time evolution
of a single species is sufficient to reconstruct a phase
portrait equivalent to the original one provided the
dimension of the reconstructed space is sufficiently high
(Packard et al., 1980; Takens, 1981). Thus, it is possible
to characterize precisely the nature of the dynamics and
even to obtain global models directly from a single time
series. See Gouesbet and Maquet (1992), Gouesbet and
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Letellier (1994) for examples using differential equations
and Aguirre and Billings (1995) for examples using
difference equations.
As exemplified by the Takens’ theorem, it is usually

believed that dynamical analyses or global modeling
techniques may be used with the same ease, regardless of
the observable chosen. In a number of practical
situations, however, the choice of the observable, that
is, the physical quantity which is recorded, does matter
and does have a bearing on our ability to extract
dynamical information from the reconstructed attractor
(Letellier et al., 1998; Letellier and Aguirre, 2002). In the
case of a biochemical reaction that involves a few
species, the quality of the dynamical analysis may
crucially depend on the species concentration chosen
to be recorded.
To shed light on this relevant—though frequently

overlooked issue—, this paper will discuss some results
obtained during a numerical investigation of a three-
variable biochemical prototype involving two enzymes
with autocatalytic regulation proposed by Decroly and
Goldbeter (1982).
In order to investigate this issue, observability indices

will be computed using scalar time series obtained by
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observing the original model via one state variable at a
time. This procedure will rank the state variables
indicating which is the most suitable one to be used in
modeling and analysis based on scalar time series. To
validate such a ranking, a detailed study will be
performed in which global models will be obtained
from the individual scalar time series. The dynamical
performance—quantified by a detailed topological
analysis—of each model and the ease of modeling—
quantified by the modeling parameters—are used to
check on the consistency of the results obtained using
the observability indices. Finally, the influence of
multiplicative noise is investigated. It turns out that
the dynamical variable for which the observability index
is the greater, enables building very good dynamical
global models and provides greater robustness against
noise.
Although the modeling and topological analysis

performed is rather involved, the calculation of the
observability indices is quite straightforward. This
means that such indices can be used in many other
systems for which a state-space model is available to
determine the best working variable before actually
performing expensive experiments and going through
time-consuming modeling and analysis procedures.
The remainder of the paper is organized as follows. In

Section 2 some background material is provided. In
particular, in Section 2.1, observability indices are
reviewed and in Section 2.2, the problem of global
modeling will be addressed. In Section 3.1, the
biochemical model will be briefly introduced. The
calculation of the specific observability indices for this
model is provided in Section 3.2 and the modeling
results are presented in Section 3.3 for the noise-free case
and in Section 3.4 for the noisy case. Such results are
discussed in Section 4 and, finally, Section 5 gives a
conclusion.
2. Background

This section quickly covers background material. For
the sake of space, all the details pertaining to the tools
used in this investigation cannot be given in this section.
The interested reader is referred to the cited literature.

2.1. Quantification of the observability

In spite of the general view, the different dynamical
variables of a given system do not permit the same
practical, information on the dynamics. As a conse-
quence, the quality of the analysis may be affected by
the choice of the variable used. This has been explicitly
shown for the R .ossler system (Letellier et al., 1998), a
three-species food-chain model (Letellier et al., 2002)
and other various cases (Letellier and Aguirre, 2002).
When a dynamical variable is adequate for representing
the dynamics the system is observable from such a
variable. In this case, it is possible to build a phase
portrait from its recorded values. This portrait, in turn,
will allow an accurate characterization and a valid
global model can be usually obtained from the data. The
observability may be quantified using an index as
introduced in Aguirre (1995) and Letellier et al. (1998).
The concept of observability in linear system theory is

standard (Kailath, 1980); (Aguirre, 1995). Consider the
system

’x ¼ Ax þ Bu;

s ¼ Cx;

(
ð1Þ

where xARn is the state vector, sARr is the measurement
vector, uARp is the input vector and fA;B;Cg are
constant matrices. For a non-linear system, A is the
Jacobian matrix of that system, B is the matrix defining
the coupling between the system and external signals
and C defines the measurement function. In all the cases
here investigated, the systems are autonomous, i.e. B=0
or u=0. Thus system (1) is said to be state observable at
time tf if the initial state x 0ð Þ can be uniquely
determined from the knowledge of a finite time history
of the output x tð Þ; 0ptptf ; since the input u tð Þ ¼ 0:
One way of testing whether system (1) is observable is

to define the observability matrix,

Q ¼

C

CA

CA2

^

CAn�r

2
6666664

3
7777775
: ð2Þ

System (1) is therefore state observable if matrix Q is full
rank, that is if rank(Q)=n. This definition is a ‘‘yes’’ or
‘‘no’’ measurement of observability, that is, the system is
either observable or not. In practice, however, a system
may gradually become unobservable as a parameter is
varied or, for non-linear systems, it seems reasonable
to suppose that there are regions in phase space that
are less observable than others. We quantify the
degree of observability with the observability index,
defined as

%d ¼
1
T

PT
t¼0 lmin½QQT;xðtÞ	

1
T

PT
t¼0 lmax½QQT; xðtÞ	

; ð3Þ

where lmaxIQQT;x tð Þm indicates the maximum eigen-
value of matrix QQT estimated at point x tð Þ (likewise for
lmin) and 
ð ÞT indicates the transpose. T is the final time
considered and, without loss of generality the initial time
was set to be t=0. Then 0pd xð Þp1; and the lower
bound is reached when the system is unobservable at
point x: It should be noticed that index (3) is a type of
condition number of the observability matrix. When a
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single variable is measured, matrix C becomes a row
vector and is directly responsible for any decrease in
observability.
For instance, we thus obtain for the R .ossler system

(Letellier and Aguirre, 2002)

dx ¼ 0:02270:014;

dx ¼ 0:13371:7� 10�14;

dx ¼ 1:9� 10�470:024:

8><
>: ð4Þ

The variables can be ranked in descending degree of
observability according to yx xx z: This means that the
R .ossler system is more observable when the y-variable is
recorded than when the z-variable is recorded. In
practice, a lot of global models were obtained from
the x- or y-variable while they are almost impossible to
obtain from the z-variable. This is not a hazard too if
the x- and y-variables are most of the time used for a
dynamical analysis.

2.2. Global modeling from a single time series

In the late 1980s, pioneering papers as for instance
Crutchfield and McNamara (1987) and Cremers and
H .ubler (1987) have introduced the idea that it is possible
to find a set of equations that might reproduce the
dynamical behavior directly from a single recorded time
series. This yields a so-called global model that hope-
fully correctly describes the dynamics over the whole
phase space.
Let us consider an a priori unknown non-linear

dynamical system defined by a set of ordinary differ-
ential equations

’x ¼ fm xð Þ ð5Þ

in which xARm and fm is the unknown set of functions
defining the physical system. The solution vector xm tð Þ
called the state vector describes a trajectory in the phase
space. The quantity uARp is the parameter vector with p

components, which, for a given time series, is assumed
to be constant, that is the dynamics is assumed to be
stationary. In such a case, the time t is not included
explicitly in the vector field fm xð Þ and the system is said
to be autonomous. In real situations, a good estimate of
the dimension m is the embedding dimension dE that can
be computed using a false nearest-neighbors method
(Cao, 1997).
Our purpose is to obtain a global model for the vector

field fm from a single time series which is designated by x:
The obtained model may then be built by using
derivative coordinates based on vectors

Xn ¼

X1 ¼ xðtnÞ;

X2 ¼ xð1ÞðtnÞ;

^

XdE
¼ xðdE�1ÞðtnÞ;












ð6Þ
where x ið Þ tnð Þ designates the ith derivative of the x-
variable at time tn: Working in such a differential space
implies a model of the form

’X1 ¼ X2;

’X2 ¼ X3;

^
’XdE

¼ F ðX1X2;y;XdE
Þ

8>>>><
>>>>:

ð7Þ

in which F is a single unknown model function to
estimate. When the model is good enough, a dynamical
behavior equivalent to the one observed on the physical
system studied is then generated by integrating numeri-
cally the obtained model. An important problem is to
choose the basis on which the function Fx may be
decomposed. Many kinds of functions types (represen-
tations) may be appropriate and have been used. For
instance, Legendre polynomials are used in Cremers and
H .ubler (1987) or Gibson et al. (1992), rational functions
have been used in Gouesbet and Maquet (1992). It
seems to us that using a multivariate polynomials basis
as introduced in Gouesbet and Letellier (1994) and
Giona et al. (1991) is a more practical approach since a
convergence theorem due to Weierstrass (Rice, 1964,
1969) exists to guarantee the existence of a good
approximation of any analytical function, at least in
the static case, and such a representation avoids some of
the numerical problems encountered with rational
functions Gouesbet and Maquet, 1992. Even after
choosing the polynomial representation, it is still
necessary to carefully select which subset of multi-
nomials should be used to compose F, since this choice
does strongly influence the model dynamical perfor-
mance (Aguirre et al., 2001). Finally, the model
parameters can be estimated using standard least-
squares techniques.
The quality of the model depends on a certain set of

parameters, called the modeling parameters. Three of
them are particularly important. Nc is the number of
centers retained for the estimation of the model function
F. A center is a point of the measured time series and its
dE � 1ð Þ successive time derivatives. Np is the number of
centers retained per cycle. This is particularly sensitive
parameters and, varying this modeling parameters may
be sufficient to affect significantly the quality of the
model (see Chapter 16 in Maquet et al. (2002)). Nk is the
number of monomials used in the polynomial expan-
sion. Nk is directly related to the degree of non-linearity
used in the polynomial expansion. A balance between a
sufficiently large number Np of centers per cycle and Nc

has to be found because when too many centers are
retained, numerical errors prevent us to obtain accurate
models. Depending on the complexity of the dynamics,
Np may vary from 10 to 30 with Nc limited to a few
hundred, e.g. Nc ¼ 400: Npdefines the precision with
which the local structures are sampled and Nc defines
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the statistics over the phase portrait. An important
remark is in order. In the case of the present technique,
the number Nc has no bearing on the model size, which
is defined by the number Nk of parameters, unlike other
model representations like radial basis function (RBF)
models in which the number of centers and the number
of parameters coincide.
3. Numerical results

3.1. The three-variable biochemical mode

The series coupling of two enzymes with autocatalytic
regulation permits the construction of a three-variable
biochemical prototype containing two instability-gener-
ating mechanisms (Decroly and Goldbeter, 1982). The
substrate S is introduced at a constant rate into the
system; this substrate is transformed by enzyme E1 into
product P1; which serves as substrate for a second
enzyme E2 that transforms P1 into P2: Both allosteric
enzymes are activated by their reaction product; P1 and
P2 are thus positive effectors for enzymes E1 and E2;
respectively. The system is considered as spatially
homogeneous as in the case of experiments on glycolytic
oscillations. The set of three ordinary differential
equations thus reads as

’x ¼ V � s1f1ðx; yÞ;

’y ¼ q1s1f1ðx; yÞ � s2f2ðx; yÞ;

’z ¼ q2s2f2ðx; yÞ � Ksz;

8><
>: ð8Þ

where x, y, and z are (dimensionless) normalized
concentrations of substrate S and of the reaction
product P1 and P2; respectively. s1 and s2 are the
normalized maximum rates of the enzyme E1 and E2: q1
and q2 quantify the ratios of the dissociation constants.
When q1 > 1 (q1 o 1), the product P1 varies faster
(slower) than the substrate S: A similar feature between
the dissociation constants of both reaction products is
quantified by q2. V denotes the substrate injection rate
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Fig. 1. Chaotic attractor solution of the three-variable biochemical model w

section P is unimodal, that is constituted by two monotonic branches separa

maximum (a) Chaotic attractor (b) First-return map.
and Ks the apparent first-order rate constant for the
removal of the final product in a reaction catalyzed by a
Michaelian enzyme far from saturation by its substrate.
The rate functions f1 and f2 of the allosteric enzymes
E1 and E2 are given by

f1ðx; yÞ ¼
xð1þ xÞð1þ yÞ2

L1 þ ð1þ xÞ2ð1þ yÞ2
ð9Þ

and

f2ðx; yÞ ¼
yð1þ zÞ2

L2 þ ð1þ zÞ2
: ð10Þ

For the sake of simplicity, the rate of enzyme E2

depends in a linear manner on the concentration y of its
substrate, that is the enzyme is never saturated by it. The
model parameters are fixed to

s1 ¼ 10:0 s�1; q1 ¼ 50:0; L1 ¼ 5:0� 108;

s2 ¼ 10:0 s�1; q2 ¼ 0:02; L2 ¼ 100

with Ks=2.00. It has been shown that this model goes
through a period-doubling cascade when the parameter
Ks is increased (Goldbeter, 1996). Beyond the accumula-
tion point, the asymptotic behavior settles down onto a
chaotic attractor (Fig. 1a). A topological analysis of
such attractor was carried out by Letellier (2002).
When the control parameter is increased (Ks=2.024),

the dynamics develop and bursting is observed (Goldb-
eter, 1996). Such behaviors are characterized by large
amplitude oscillations appearing on the x-variable time
series (Fig. 2a) with a large period. These large
amplitude oscillations present small period when they
are investigated from the two other dynamical variables
(Fig. 2b and c). These large amplitude bursts appear
between two phases during which the oscillations
typically correspond to the segment of trajectories
visiting the population of unstable periodic orbits
embedded within the attractor shown in Fig. 1a. This
is a rather complicated case to investigate because two
different time scales are present. Note that the global
shape of the y- and z-time series are similar to those
42.0 44.0 46.0 48.0 50.0
xn

x n
+

1

xC

42.0

44.0

46.0

48.0
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0 1

(b)

ith V ¼ 0:45 s�1 and Ks ¼ 2:00: The first-return map to the Poincar!e

ted by a critical point. This critical point is located at a differentiable
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generated by the neuron model proposed by Hindmarsh
and Rose (1984). The chaotic attractor for which
bursting is observed is shown in Fig. 3.

3.2. Observability of a biochemical model

The average observability indices are computed for
the three variables of the biochemical model (8). They
are equal to

dx ¼ 8:2682� 10�11;

dy ¼ 5:4648� 10�20;

dz ¼ 4:2758� 10�15

8><
>: ð11Þ

which means that the three variables may be ranked as

xx zx y ð12Þ

as far as observability is concerned. This order means
that the dynamical variable x provides a better
observability than the dynamical variable z or y. In
other words, from these observability indices, it may
be concluded that it should be better to measure the
concentration of the substrate S rather than the
concentration of products P1 and P2:
In what follows the observability of model (8) will be

investigated in a more pragmatic way. Instead of
computing indices, global models will be sought using,
successively, the three state variables. Previous experi-
ence has shown that global modeling is sensitive to the
choice of the observable and that using time series
recorded from variables with relatively high observa-
bility usually lead to better models. Therefore, having
computed the observability indices in this section, it is
desired to find out how adequate are variables x; y and z

for the purposes of modeling and to see if such a
conclusion is consistent with the values of dx; dy and dz:

3.3. Modeling from noise-free time series

A global model is successively attempted from a time
series of each dynamical variable. The modified algo-
rithm developed by Cao (1997) for the false nearest-
neighbor technique (Abarbanel and Kennel, 1993),
yields an estimate for the embedding dimension equal
to 3 irrespective of which dynamical variable is used
(Letellier, 2002). Thus, in what follows only 3D models
will be considered. The time series used for the
estimation of the global models are generated by a
numerical integration of the three-variable biochemical
model (8) with a time step dt=0.02 s. The best models
were obtained for the modeling parameters as follows:

* Nc;Np;Nk

� �
¼ 396; 22; 56ð Þ for the x-variable,

* Nc;Np;Nk

� �
¼ 526; 60; 56ð Þ for the y-variable,

* Nc;Np;Nk

� �
¼ 400; 21; 56ð Þ for the z-variable.

These modeling parameters are almost the same with the
exception of Nc and Np for the y-variable. It is clearly
more difficult to obtain a global model from the y-
variable than from the two other variables. More centers
are needed and, more significantly, much more centers
per cycle must be retained for obtaining a model.
Indeed, 60 centers per cycle, which is significantly more
than the usual value, must be retained. Also, even if the
models constructed from the x- and z-time series have
very similar modeling parameters, a quick look at the



ARTICLE IN PRESS

0.5

0.0

-0.5

-1.0

Y
 =

 d
x/

dt

Y
 =

 d
x/

dt

Y
 =

 d
x/

dt

-1.5

-2.0

-2.5

-3.0
25.0 30.0 35.0 40.0 45.0 50.0 55.0

X = x X = x X = z

100.0

50.0

0.0

-50.0

-100.0

-150.0

-200.0
0.0 100.0 200.0 300.0 400.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.50 1.00 1.50 2.00 2.50

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

Y Y Y

25 30 35 40 45 50 55

75

50

25

0

-25

-50

-75

-100

-125
25 75 125 175 225 275 325 375

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-075

-1.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50

XXX

Differential embedding

Phase portrait of the global

(a) (b) (c)

Fig. 4. Plane projections of the differential embeddings induced by the three variables of the biochemical model (8) and the portraits generated by the

corresponding global models (a) x-variable (b) y-variable and (c) z-variable.

J. Maquet et al. / Journal of Theoretical Biology 228 (2004) 421–430426
respective phase portraits shown in Fig. 4a and 4c
clearly reveals the superiority of the model obtained
from the x-time series, as it would be expected from the
observability indices estimated in the previous section.
There is therefore a connection between the observa-
bility indices and the ease with which a global model can
be build from the respective observed time series.
The first-return maps to Poincar!e sections for the

original system and the global models are shown in
Fig. 5. Such maps provide a means for detailed
topological analysis by means of comparison of the
population of periodic orbits, shown in Table 1.

3.4. Modeling from noisy time series

When real biochemical reactions are investigated,
data are always contaminated by noise and one may
expect that the non-equivalence between the dynamical
variables will be further emphasized. In other words, it
might be expected that, in general, the presence of noise
will decrease the global observability of the dynamics
and the correct choice of which variable to record
becomes even more crucial. Moreover, it was observed
that noise destabilizes limit cycles thus inducing chaos
(Crutchfiled and Farmer, 1982) and that the parameter
space may be changed under noise contamination (Ling
and L .ucke, 1986). The beginning of the bifurcation
diagram (low-noise level) computed versus the noise
standard deviation (Fig. 6) is quite similar to the one
which is computed for the biochemical reaction (8)
versus the control parameter. Increasing the noise level
increases the population of periodic orbits embedded
within the attractor (Fig. 3).
We would like to know what is the affect of the noise

on the dynamics and its observability. To this end
multiplicative noise was added in numerical simulations.
This was accomplished by adding a random variable to
each dynamical variable of the biochemical model (8).
The standard deviations of these random variables are
0.001, 0.002 and 0.05, respectively. Even with such a
small amount of noise, the dynamics is already
significantly affected (Fig. 6). In particular, the bursting
dynamics, observed for Ks=2.024 on the noise free
model (Fig. 3b), can be induced with noise (s=0.002)
even for Ks=2.000. A phase portrait (Fig. 7b) looks very
similar to the attractor generated by the biochemical
model (8) without any noise (Fig. 3).
With these noisy dynamics, no satisfactory global

model from the y- and z-variables were found. Increas-
ing the embedding dimension did not help. Such a lack
of success in modeling results as a consequence of the
strong blurring (by the noise) of the high-frequency
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Table 1

Population of periodic orbits extracted from the global models

estimated from the different variable of the biochemical model

Sequence x-variable y-variable z-variable

0 � �
1 � � �
10 � � �
1011 � � �
101110 � � �
101111 � � �
10111 � � �
10110 � � �
101 � � �
100 � � �
100101 � � �
10010 � � �
10011 � � �
100111 � �
100110 � �
1001 � �
1000 � �
1000010 � �
1000011 � �
10001 � �
10000 � �
100001 �
100000 �

200

150

100

x n

50

0 0.005 0.01 0.015 0.02
Noise amplitude

Fig. 6. Bifurcation diagram versus the noise standard deviation for the

biochemical model with a multiplicative noise, that is a random

variable is added to each of the three variables of the biochemical

model at each time step dt (Ks ¼ 2:000).
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oscillations present in the time series of these variables
(see Fig 2b and c).
Nevertheless, when the substrate concentration x is

measured, it is possible to obtain a model, even with a
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noise level as large as s=0.05. The best model was
obtained for ðNc;Np;NkÞ ¼ ð899; 200; 20Þ: The number
of centers per cycle has been increased significantly for
being able to obtain a good global model. Moreover, the
number of monomials retained in the polynomial
expansion has been reduced to avoid the cumulation
of numerical errors. The model from the biochemical
reaction is therefore more simple from the noisy x-time
series than from a noise free x-time series. Nevertheless,
the quality of the modeled dynamics (Fig. 8b) is not as
good as observed from noise-free data. Such a feature is
quite expected and explains why it is much more difficult
to obtain a satisfactory global model from experimental
time series. The best model generates a phase portrait
(Fig. 8b) which looks like the differential embedding
built from the measurements of the x-variable (Fig. 8a).
As usually observed, the corresponding dynamics is less
developed than the dynamics of the noisy data. Such a
feature may be easily explained by the fact that the
global model is purely deterministic and, consequently,
does not capture the stochastic component correspond-
ing to the noise.
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4. Discussion

4.1. Observability

It is important to notice that the computed indi-
ces do not convey any ‘‘absolute’’ measure of observa-
bility. On the contrary, they only provide relative
information, that is, observability indices can be used
for comparing variables involved in a given system.
Also, this is the reason why symmetry—that could
turn out to be quite harmful to the observability
depending on the variable chosen—does not have
any bearing on these indices (Letellier and Aguirre,
2002).
The values of the indices have very different orders

of magnitude which suggest that the observability of
the dynamics strongly depend on the choice of the
observable. Such a feature could result from the length
of the segment along which different cycles are
quite difficult to distinguish on the differential embed-
ding induced by the y- and z-variables. As it has
been observed for the z-variable of the R .ossler system,
there is quite a significant time interval during which
the amplitude of variables y and z are nearly con-
stant while the amplitude of the x-variable evolves
significantly (Fig. 2). Thus, when the y and z variables
are recorded, the dynamics cannot be efficiently
observed.
Recently, it was also shown that the observability of a

dynamics from a given variable also depends on the
nature of the coupling between the dynamical variables
(Letellier and Aguirre, 2002). In particular, the more
complex the analytical expression of the model function
F, the less observable the dynamics. Consequently, since
the y-time series (Fig. 2b) may even seem more favorable
than the z-time series, the coupling between the
dynamical variables is much more complicated when
the dynamics is observed from the y-variable than from
the z-variable.
Y

2.5

0

-2.5

-5

-7.5

-10

50 100 150 200 250

Xb)

of the biochemical model with a multiplicative noise (Ks ¼ 2:000 and
Model attractor.



ARTICLE IN PRESS
J. Maquet et al. / Journal of Theoretical Biology 228 (2004) 421–430 429
4.2. Modeling

The phase portraits generated by the three global
models are shown in Fig. 4, where they can be compared
to the differential embedding built from the three
variables of the biochemical model (8). At first sight,
the phase portrait generated by the global model
estimated from the z-variable is the poorest since only
a very small chaotic band is obtained (Fig. 4c). The
phase portrait generated by the global model from the y-
variable is just slightly less developed than the original
dynamics and the one generated by the global model
from the x-variable is qualitatively equivalent to the
differential embedding induced by the same variable.
These differences between the target dynamics and the
models can also be appreciated comparing the first-
return maps (Fig. 5). In particular, the shape of the first-
return map computed for the global model estimated
from the y-variable (Fig. 5b) is quite different from the
one for the first-return map of the differential embed-
ding (Fig. 5a). Nevertheless, the topological structure is
preserved: one increasing branch and one decreasing
branch are separated by a critical point located at a
differential maximum. Moreover, the template corre-
sponding to the phase portrait is the same as the one
extracted from the phase portrait of the biochemical
reaction (8) (Letellier and Aguirre, 2002). Small
differences may be observed when the population of
periodic orbits embedded within the attractors are
compared. The population of the original attractor is
reported in Table 1 with the populations for each global
model. In the case of the global model estimated from
the y-variable, only the last saddle-node bifurcation is
missing. This results in the lack of the pair of period-6
orbits encoded (100001)–(100000). This is directly
related to the fact that the increasing branch is slightly
less developed.
For the z-variable, the increasing branch of the model

first-return map (Fig. 5d) is significantly less developed
than for the first-return map associated with the
differential embedding (Fig. 5c). A clear signature of
such a feature appears in the population of periodic
orbits embedded within the attractor generated by the
global model. No orbits appearing after the saddle-node
bifurcation inducing the pair of period-5 orbits encoded
by (10010)–(10011) are identified (Table 1), while the
last saddle-node bifurcation involved in the biochemical
reaction (8) for Ks = 2.000, induces the pair of period-6
orbits, respectively, encoded by (100001)–(100000). This
means that, according to the unimodal forcing order
(Letellier et al., 1995), one of the control parameter is
not properly estimated in the global model. This
happens quite often when a global model is attempted
(see, for instance, Letellier et al. (1995)). Increasing the
number of centers per cycles does not help to improve
the quality of the model as it was required for the y-
variable. The different shape of the first-return map for
the model built from the z-variable is the responsible for
the numbers of periodic orbits embedded within the
model attractor and the original system (8) being so
different. The dynamics is significantly less developed
for this model.
The best model is obviously obtained from the x-

variable. It has the same population of periodic orbits as
the one of the differential embedding which is reported
in Table 1. The dynamical performance of the two
global models estimated from the y- and the z-variables
is much poorer as a direct result of the poor
observability of the dynamics from these variables when
compared to the x-variable. Nevertheless, one has to
note that the worst global model is the one estimated
from the z-variable and not the model estimated from
the y-variable as it was expected from the values of the
observability indices. In this case, the fact that dyodz

seems to be reflected by the fact that significantly larger
values for Nc and Np are required for the y-variable,
most likely as a way of compensating for the poorer
observability.
The results of this section, therefore, seem to support

that the observability order (12) is consistent. Thus,
when a biochemical reaction is to be investigated from a
single time series, this study suggests that the best
strategy would be to measure the concentration of the
substrate instead of, as it could be believed, the last
product of the reaction.
5. Conclusion

A three-variable biochemical model involving two
enzymes with autocatalytic regulation was investigated
based on scalar time-series. Such data were obtained by
taking the substrate concentration and the two enzyme
concentrations one at a time. It has been shown that the
reaction modeling is sensitive to the choice of the
observable, that is, to the choice of the concentration
which is measured. Most likely, this sensitivity will also
be observed in different attempts to analyse the system
by other means. Such sensitivity is significantly in-
creased in the more realistic case where the dynamics is
contaminated by noise. From noisy data, global models
were obtained only from substrate concentration mea-
surements. From measurements of the two other
concentrations, no global model was found. In other
words, the deterministic nature of the underlying
dynamics cannot be identified from the measurements.
In any case, the dynamics generated by the global model
obtained from the noisy x-time series corresponds to the
dynamics of the biochemical model but with a slight
change in one of the parameters. In other words,
the model obtained corresponds to a close neighbor of
the original dynamics in the space of models. This shift
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due to noise has been recently observed and reported as
being a common phenomenon in global modeling
(Aguirre et al., 2002).
The observability indices employed in this paper can

be easily computed for any system for which a rough
state-space model is available. Such indices could then
be used to determine the best working variable before
actually performing expensive experiments and going
through time-consuming modeling and analysis proce-
dures to improve on the state-space model. In this way,
it is believed that such indices provide a simple yet
efficient and general tool to assist in the investigation of
non-linear dynamics in general.
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