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This paper addresses the training of network models from data produced by systems with symmetry prop-
erties. It is argued that although general networks are global approximators, in practice some properties such as
symmetry are very hard to learn from data. In order to guarantee that the final network will be symmetrical,
constraints are developed for two types of models, namely, the multilayer percédc&) network and the
radial basis functiofiRBF) network. In global modeling problems it becomes crucial to impose conditions for
symmetry in order to stand a chance of reproducing symmetry-related phenomena. Sufficient conditions are
given for MLP and RBF networks to have a set of fixed points that are symmetrical with respect to the origin
of the phase space. In the case of MLP networks such conditions reduce to the absence of bias parameters and
the requirement of odd activation functions. This turns out to be important from a dynamical point of view
since some phenomena are only observed in the context of symmetry, which is not a structurally stable
property. The results are illustrated using bench systems that display symmetry, such as the Duffing-Ueda
oscillator and the Lorenz system.
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[. INTRODUCTION paper are stated in Sec. Il C for MLP networks and in Sec.
Il B for RBF models. Section IV presents some numerical
An open question in model building is how to choose theevidences of the results introduced in Secs. Il C and IlI B.
model type. Some examples in nonlinear dynamics includéinally, Sec. V discusses the main points of the paper.
radial basis function§RBF) [1], nonlinear ordinary differen-
tial equations[2-5], nonlinear difference equatio$—9, Il. MULTILAYER PERCEPTRON NETWORKS
wave nets, that is, neural networks with wavelet activation
functions,[10] and multilayer perceptrofMLP) networks
[11,12. Few papers up to date seem to have compared the The equation of a MLP network can be written as
performance of different model types, a few exceptions in-
clude Refs[13,14,9 and the last two references consider
MLP networks. y(k)="o
The use of MLP networks in global modeling problems

applied to nonlinear dynamical systems is not as intense agherey(k) is the network output at timk, u;(k) is theith
other representations. One practical difficulty related to MLPinput,wj} indicates a weight of the hidden layer that connects
networks is that in some cassystems with symmetiysuch  thejth input(which is theith output of the previous laygto
models will hardly learn the system symmegyactly AS @  the jth neuron of the hidden layeh is a constant, called
consequence, specific features that are not structurally stabl&as, and the neuroactivation functionis f. The variables

as pitchfork bifurcations, may not be present in the finalingicated by an “o” are related to the output neuron. Finally,
model. This comes as a consequence of the great f|EXIbI|ItNi is the number of input signals and; is the number of

of the network structure and, in a sense, the blessing haseyrons in the hidden layer. The function shown on the right-
becomg a curse. In particular, it is shown that symmetry capgnd side of Eq(1) is often calledfeed forwardbecause

be easily imposed on a MLP network structure. Such conyere are no feedback loojisternal to the network. Com-
straints will result in a network that iexactlysymmetrical o choices for nonlinear activation functions are Gaussian,
(m a dyna}m|cal sen.$eand.that will be able, in principle, to sigmoidal, and the hyperbolic tangent tagh(The weights
display pitchfork bifurcations and other symmetry-relatedang pias terms, on the other hand, are determined by optimi-
phenomeng15]. In addition, networks obtained with such ;40 algorithms that search to minimize a cost function
constraints are in general more robust to noise and to ove(yhich usually depends on the difference between the given

fitting. It is believed that the use of restrictions during net-yata and the network output. Much care should be taken
work training (one type of which is proposed in this paper iy this minimization task to avoid overparametrization prob-
may open a wide range of applications of MLP networks iNems[16,17.

global modeling of nonlinear dynamics.

This paper is organized as follows: Secs. Il and Il pro-
vide a very brief description of the type of networks being
considered, the used nomenclature, and the relation between A network in the form of Eq(1) can be easily written in
network topology and fixed points. The main results of theautoregressive form witm, lags of exogenous inputs by

A. Preliminaries

N; N;
bo+ EJl W, b,-+21 w}}ui(k)) ) 1)
1= =

B. Fixed points
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takinguj=u(k—i), i=1,2,...n,, andn, lags of the out-  This will happen if and only if all the activation functiorig

put, that is,up . =y(k—¢), {=1,2,...ny. In this case andf, are odd and continuous. o _

the network output will become inputs to the network in _An important consequence of all the activation functions
future iterations and this recursion enables the network t&€ing odd functions is that if the network has fixed points
become a discrete dynamical function of order In steady ~Other than the trivial ay=0, then such fixed point will be
state, with a constant input,U=u;=u(k—i), i Symmetical with respect ty=0.

—12,...1,, the network will converge to constant values The main results of this section can be stated as follows.

if it is asymptotically stable. Such values are the stead -stat':or an autonomous MLP network to have a set of fixed
ymp y : y soints that are symmetrical with respect to the trivial solution
values of the output and are denoted by Up,+¢=Y(K

y=0, it is sufficient that all the activation functions be odd
—t), ¢=1,2,...ny. Therefore, in steady state the network and that all bias terms be zero. If the network has only one
can be written as fixed point, it will be the trivial onég/=0. The above condi-
N N tionlslare nohecessarymﬁtherlatically shpggkin(i;, because a
e~ g multilayer perceptron with at least one hidden layer is a uni-
bj+u241 WJhieri =;+1 WTI) ) () versal approximator. An ideal training algorithm operating
! under ideal conditions would learn symmetry if this feature
The solutions of Eq(2) for U=0 are called the fixed points Were correctly represented in the data. In such a case, for
of the network. Note that in this case the input is null. instance, the lack of oddness of an activation function cou_ld
be compensated by a nonzero bias parameter. In practice,
however, training is limited by a number of factors and sym-
metry is lost in most cases. Because of this, different training
In order to have fixed points at the origin, an autonomousalgorithms will perform differently. However, as symmetry is
MLP network, as shown in Eq1), should satisfy a structurally unstable property, the lack of ideal conditions
N vaiII dgﬁtroy S):jmrgetryr/] irreipecr:ivedof thﬁ p?(;tigular train!ng .
o algorithm used. On the other hand, it should be appreciate
b0+j21 W fj(bj)) =fo(bo+w'), (3) that the conditions derived in this section guarantee symme-
try and not necessarily good dynamical performance.
where vector notation was used. Because the weights and the It should be noticed that the above result holds for any
bias parameters are estimated in such a way as to minimizesmber of hidden layers and any activation functions as long
cost function that will require a good fit of the network @S all of them are odd. AlSO, the result will still hold in the
model to the(dynamica) data, it is in general very difficult case when the network has different activation functions.
to choose the activation functions in order to satisfy €.
Moreover, such functions should be differentiable in order to lll. RADIAL BASIS FUNCTION NETWORKS
use general purpose training algorithms. A. Definition
On the other hand, if the MLP netwoift) does not have
any of the bias terms E@3) reduces to

Nj
y= fo(b0+ 2}1 Wt

C. Conditions for symmetry

0=f,

A RBF model is a nonlinear map, acting on a
dsdimensional embedding space, of the form

Nj
Ozfo( 121 W?fj(o)) =fo(w'fo) (4) f(y)=wo+2 w; ¢([ly—cil), 5
and this condition is easily satisfied fi§=0, that is,f;(0) ~ where yeR%, || is the Euclidean normw;eR are the
=0,j=1,... N;, andf,(0)=0. weights, ¢;e R% are the so-called centers, ant{-):R"

Let us denote the static function of an autonomous net=—R is a radial basis function that is usually chosepriori.
work without bias terms by (-). It is desired to derive the Such a function serves as the activation function in RBF
conditions for this network to have fixed points that are sym-models and is symmetrical with respect to the origin. If the
metrical with respect to the origin, e.g;,and —y are fixed function¢(-):R"—R and the centers; are selected before-
points. Mathematically, the following conditions should be hand, the weights; can be estimated using standard least-
satisfied: squares techniquégg].

In many problems of obtaining nonlinear dynamical mod-
Yy=F(y)=0 and -y—-F(-y)=0. els from data, it has been shown that it is useful to include a
linear part in the RBF network with autoregressive terms
In other words the following equations should hold true andr,] if the system is nonautonomous, with exogenous terms
such as

V=fo(_§ w?f,-(v_ » wﬂ)) S

y<k>=wo+2i o, ¢[Hy<k—1>—ci|\]+i§1 ay(k—i)

j=1 i=n,+1
NJ Ni nu

_=—f0( wffj<—7 wﬂ)). +> bu(k—i)+ek), (6)
j=1 i=n,+1 =1
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where y(k—1)=[y(k—1)---y(k—ny)u(k—1)---u(k (a)
—ny) 1", N is the number of centers, amgk) is the error. ) )
Model (6) is sometimes referred to as affine plusRBF R y
[18].

B. Conditions for symmetry

To begin the discussion on how to impose symmetry dur- c y
ing RBF training, let us consider the problem of selecting the
centers; in Eq. (5) which is one of the crucial points in RBF
modeling. In one of the first papers that addressed modeling
nonlinear (chaotig dynamics using RBF models, the
centers—that need not be observed data—were simply cha (b)
sen uniformly over the input domai9]. Smith has briefly
commented on four different ways of selecting the centers R
[20]. A procedure that has proven to produce parsimonious
RBF models was described in detail in RE21]. In that
method the candidate centers are taken from the whole set ¢
training data. Subsequently, the centers that when included i
the model will maximize the increment to the explained vari- ¢; y
ance of the data are effectively used.

For the sake of clarity, consider a one-dimensional RBF 1d
model composed of only two basis functions. After training
(parameter estimatigrihe resulting static nonlinear function
can be represented as in Figa)l For the same reasons as ©)
discussed in the context of MLP networksee Sec. )it is 2 )
necessary that such a function be odd to guarantee dynamici ]
symmetry properties. In order to constrain the static nonlin-
ear function to be closer to an odd function, two steps are
taken and will be discussed below.

1. Symmetrically chosen centers

A key point in obtaining an odd static nonlinear function
based on a RBF model is to have a set of symmetrical cen 1-b
ters. This has been observed to be useful in global modeling
problems even with other model representati®#. To this
effect’ the centers are chosen using any procedure, as for FIG. 1. Schematic illustration of how symmetry can be imposed
instance the method detailed in RE21]. For each center during training of a RBF network. Irfia) no restrictions are im-
chosen based on such a method, a “mirror” basis functiorPosed, and in(b) the centers are taken to be symmetrical with
with its respective center, which is symmetrical with respechSpeCt to the embedding space but no restrictions on the weights

to the origin to the one previously chosen, is added to th@re used. Finally, ir(c) besides taking symmetrically spaced cen-
model. The mirror center will usuallyiot be’ an observed ters the weights of each pair of symmetrical centers are constrained

data point in the embedding space, but that is not a problerﬁi’dge such thats; = —w; . Clearly, only in(c) is the functionf(y)

in RBF modeling[19,24.

A pictorial representatpn of thls is shown in FigtbL (2) N, is even. MoreoverNJ/2 centers are chosen by
Although the resulting static function is not yet exactly odd, ome criterion and the othéd/2 centers are taken to be
there is usually an enormous improvement when comparedy metrically placed with respect to the origin. Such centers
to the models for which the centers and respective basigiq referred to as mirror centers.
functions are not symmetrical at all. (3) The No+ny+n,, weights of the model should be esti-
mated in such a way that thg,+n, weights of the linear
part are constraint free but tié, weights of the basis func-

From Fig. 1 it becomes clear that in order to have a periions are constrained in pairs to satisfy=— w;, wherei
fectly odd static function, it is not sufficient to take sym- andj indicate the indices of a given center and its mirror.
metrical centers. In fact, it is necessary that the weights oApart from the constraintw;=—w;, the basis function
two given symmetrical centeg= —¢; satisfy the condition weights are free parameters and together with ripe n,,

2. Constrained parameter estimation

w;=—w;. This is illustrated in Fig. (). weights of the linear part can be estimated to minimize a
Therefore, the problem is to find a model of the fof®  given cost function.

such that we have the following. In what concerns the static nonlinear function, as far as
(1) wo=0. the property of being odd is concerned, the presence of the
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linear part(which by definition yields a static odd functipn
will not alter the above requirements. Therefore, the afore-
mentioned itemg1) to (3) apply to both RBF and affine plus
RBF models. Therefore, the following model is sought

N ny
y<k>=2 o, ¢[||y<k—1>—ci||]+i§1 ay(k—i)

+,Zul biu(k—i)+&(k), (7)

where the hats stand for estimated parameters or weights and 1t
£(k) is the model residual at timke Taking Eq.(7) over a
window of data, the resulting set df equations can be writ- 0.5 5 6
ten in matrix form as A

10 11 12

~F
(o0}
©

FIG. 2. Bifurcation diagram for systeifi2). At A~6.6 andA
~8.0 a period-3 limit-cycle undergoes supercritical and subcritical

X . ] ] pitchfork bifurcations, respectively. This is a signature of symmetry
where@e RNe*"v* M is the vector of weights to be estimated in the system.

and the regressors matrik e RN*(Net1y 04 js known.

It is clear that the set of constraints detailed in it€3h . L
i ) . e where CLS stands foconstrained least squareand 6, s is
above can be written in the following forrd=S6, where0  he standard least-squares solution which is given by the first
is an Nc/2-dimensional vector of zeros andS  term on the right-hand side of EL1).
e Z(NA* Nty s @ matrix with elements 0 or 1. For ex- | closing this section an important remark is made. The
ample, suppose the RBF model is composedNgf4 cen-  training data for the RBFs when the aforementioned con-
ters,ny=2 autoregressive terms, amg=1 exogenous in-  straints are imposetkmain untouchedin other words, the

y=Vo+£ (8)

put, then the set of constraints constraints are related to the network structure and not to the
. data.
w7
(:)2 IV. NUMERICAL EXAMPLES
&)3 A. Symmetrically constrained MLP networks
0O, |1 1.0 0 0O . . . . . ) .
= w4 |, (9) This section will consider the Duffing-Ueda oscillator
0j [0 01 100 ) given by Ref[24]
a;
- y+ky+y*=u(t) (12)
a
L E)1_ with k=0.1 andu(t)=Acos(wt). In this work w=1 rad/s

and the input amplitude is varied in the range<4&<12 as
which is obviously in the fornm0D=S#, implies w;=—w,  a bifurcation parameter. Within this range of values this sys-
and w3=—w,. Moreover, there are no constraints on thetem displays a rich variety of bifurcatioqs as can be seen in
parameters of the linear part of the model. A cost functionFig. 2. This figure was obtained by Poinca@mpling in the
commonly used in modeling problems is the sum of squaregpace [y ¥],w)=R?x 5! after discarding many cycles in
residualsé’ £ Therefore, the solution to the problem of find- order to avoid any transients. It should be noticed that in this
ing a vector@ that minimizes&é'£ and satisfies the set of system the input and output will always be phase synchro-
constraints0= S8, that is, nized. In other systems, however, where phase synchroniza-
tion does not always occur, the sinusoidal amplitude is better
0 — LT and more rigorously treated as an initial condition rather than
cLs=argmin &' £], a bifurcation parametd25].
R This system and the respective bifurcation diagram have
0.0=S0, (100  been previously considered in the context of NARMAX
polynomials[6] and of wavelet networks and MLFP&0]. In
is given by Ref[23], the latter reference, it was reported that no MLP network was
found that would satisfactorily reproduce the system dynam-
bCLs: (vT) "1 Ty— (T~ 1sT ics. A wavelet network—a network with a structure close to
. a RBF but with wavelet-type basis functions—was obtained
X[S(¥ W) 1ST]71(Sh.5—0), (11)  for which a bifurcation diagram quite similar to the one in
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FIG. 3. Bifurcation diagrams of networka) HLL, (b) HLLB, (c) HHL, and(d) HHLB. Caseda) and(c) correspond to networks without
any bias terms and caséy and(d) to networks with bias terms.

Fig. 2 was show10]. In spite of the clear similarity, saddle- had no noise added. Because training starts with a random
node bifurcations appear instead of the pitchfork bifurca-choice of initial values for the weights, 100 independent
tions. This happens as a consequence of lack of symmetry simulations were carried out for each network. Figure 3
the network. In the remainder of this section, this assertiorshows typical bifurcation diagrams of one MLP network of
will not only be illustrated but also, using the main result each category. As can be seen, the presence of bias param-
described in Sec. 1l C, symmetry will be easily imposed oneters precludes the network to undergo pitchfork bifurca-
the MLP network during training thus enabling the final tions. Also, it must be pointed out that the bifurcation seen in
model to undergo a pitchfork bifurcation. Fig. 3(b) at A=~6.6 is not a pitchfork but rather a saddle

The following overall network topology was found to be node, as illustrated in Fig. 4. Pitchfork bifurcations were
very competitive:us(k)=u(k—1), us(k)=u(k—2), uz(k) only observed for HLL and HHL networks. No uncon-
=y(k—1), uy(k)=y(k—2), andus(k)=y(k—3); just two  strained network presented pitchfork bifurcations irrespec-
hidden neurons, i.eN;=2, one of which was always;(-) tive of the stopping criterion.

=tanh(-), and the other was eithdf,(-)=tanh(-) or f, A second set of experiments was carried out. This time the
(-)=lin(-), where “lin” indicates that the output of this

neuron is a linear combination of the inputs. The output neu-

ron in both cases is linear, that is, for boff(-)=lin(-).

tively, and for them the bias parameters were omitted from
the topology. Other two similar networks were trained, but in

such cases the bias parameters were maintained in the moc
els. Such networks are referred to as HHLB and HLLB.

Training was performed using a Levenberg-Marquardt al- - g 4. By adding a simple term, the symmetry of the system is
gorithm with ten noise terms to reduce noise influef@@.  proken. In(a) the original branch loses stability giving birth to two
Training was halted whenever the network error achieved &taple branches via a pitchfork bifurcation. {b) the original
minimum of 10 3. The input-output data were the same asbranch does not bifurcate at all. The second stable branch appears
used in the context of polynomial models as discussed imhrough a saddle-node bifurcation. Such a scenario is observed in
Ref.[27]. Such a data set was generated by simulation angig. 3b) at A~6.6.-

These two networks are referred to as HHL and HLL, respec- /’—K

(a) Pitchfork bifurcation (b) Saddle—node bifurcation
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FIG. 5. Bifurcation diagrams of networkg) HHHLL, (b) HHHLLB, (c) HHHHL, and(d) HHHHLB. Casega) and(c) correspond to
networks without any bias terms and caglg)sand (d) to networks with bias terms.

networks had the number of neurons increased. The resuldding [20]. In order to address such a situation, the data
are summarized in Fig. 5, where the notation follows fromshown in Fig. 7a) were used to train RBF modelsithout

the previous discussion. Since the data used to traifdbs any symmetry constraints. One of the best models found per-
Fig. 5 second set of networks are the same as for the nefermed as shown in Fig. (B). Taking the mirror for each
works corresponding to Fig. 3, it becomes clear that imposehosen center, a family of RBF models was obtained and the
ing symmetry is still effective. Moreover, in some casesreconstructed attractor of one of the best models in that fam-
[compare Fig. &) with Figs. §b) and Fig. %d)] the lack of

constraints renders the networks less robust to changes in tF -2 . . . . . . .

topology.

151
B. Symmetrically constrained RBF networks

This example uses the well-known Lorenz system

X=0o(y—Xx),

x{k+3)
o

y=px—y-xz,
z=xy-pBz (13

Choosing 0=10,8=8/3, and p=28, the solution of
Egs.(13) settles to the well-known Lorenz attractor shown in -
Fig. 6.

If a homogeneous window of data on the attractor shown % -5 -0 = ' 5 m s 20
in Fig. 6 is taken to train RBF models, it is not very difficult
to find good models with approximately symmetrical prop-  FIG. 6. Bidimensional delay reconstruction of the Lorenz attrac-
erties even without any constraints. However, inhomogetor from thex variable. This reconstructed attractor has an inversion
neous data are a reality in nonlinear data analysis and modymmetry.
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FIG. 7. (8) Inhomogeneous window of data produced by the Lorenz system. Data produced by a RBF modeljaivigtbut any
constraints. Model witiN.=50, d.=n,=5; (c) with pairs of symmetrical centers but no constraints on the weights. ModelNyit60,
de=ny=9; and(d) with pairs of symmetrical centers and constrained weights. Model Mjta80, d.=n,=6.

ily is shown in Fig. 7c). Although symmetry has somewhat This modest increase in network size can be thought of as the
improved, the resulting reconstructed attractor is clearly unprice to be paid in order to guarantee symmetry.
symmetrical. Finally, taking centers as before but imposing Some results on network modeling of the Lorenz dynam-
symmetry constraints during parameter estimation, as ddcs were recently publishef®9-31]. The latter reference is
tailed in Sec. llIB 2, a famlly of models was obtained. Thevery informative as far as symmetry properties are con-
attractor of one such model is shown in Figd)7 which is  cerned. Observing the generous amount of plots in the paper,
very much symmetrical, as it would be expected. it seems fair to conclude that both measurement and dynami-
In all cases the centers were chosen using the error redugg| noise preclude the network to leagractlythe underly-
tion ratio criterion detailed in Ref21]. In order to get a jng symmetry. In fact, dynamical noise is even more harmful
broad picture in model space, the number of cemt&rand  to the symmetry than measurement noise. The obvious lack
the dynamical order of the mode|, were varied over a wide of symmetry in many of the reported attractors can be clearly
range of values. No attempt was made in order to optimizginderstood in the light of the results discussed in Sec. Il C

the values obtained for such variables. In practice, in order tgjven that the referred authors use networks with bias terms
aid choosing such modeling parameters, the Schwartz critegnd activation functions that are not odd.

rion can be used to choose the number of basis funcfibns
and a modified false-neighbor approach can be used to esti-
maten,, [28].

It is instructive to point out that when parameter con- This section aims to provide more rigorous evidences,
straints are imposed during the training of the RBF networkpased on topological analysis, that the constrained RBF net-
there are onlyN/2 “free” basis functions. Therefore, the work produces, in fact, a symmetrical attractor. The RBF
model that produced the data shown in Figd)dthat has 80 model obtained without any constraiffig. 7(b)] is topo-
centerg would be equivalent to a RBF with 40 centers andlogically equivalent to a modified Lorenz system proposed
no constraints in what concerns number of free parameterdy Rassler. The modified Lorenz system

Topological analysis
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. 0,75
X=X—Y—XZ, :
O,SE

y=bx—cy+d,
0,25;

z=x2—az (14) 0

'xt+4

has symmetry properties like the Lorenz system as long a: 02
d=0. Whend# 0, the system cannot display symmetry since g
it no longer obeys the relatiof(I'-x)=1"-f(x), wherex
=(x,Y,z) andI’=diad — 1 —1 1] which defines the rotation
symmetry around the axis. Whend=0, the system has 2
three fixed points as the Lorenz system. One is a saddle 4E
located at the origin of the phase space and the two others ar ’
symmetric with respect to the origin. Whe 0, one of the
symmetric fixed points disappears and the attractor is not FIG. 8. Avatar of the Lorenz system for which the symmetry is
symmetric anymorédFig. 8). This attractor is topologically broken. Parametersa(b,c,d)=(0.1,0.07,0.38,0.0015).

equivalent to the attractor solution of the RBF model esti-

mated without any constrain{&ig. 7(b)]. Such an equiva-

lence may be exhibited in a refined way by computing aparticular map quite rarely observed and peculiar to nonsym-
first-return map to a Poincarsection defined by the fixed metrical systems. This confirms that the unconstrained RBF
point located in the left windFigs. 9a) and 9b)]. Two  model is not symmetrical.

increasing monotonic branches are observed. This is a very When the RBF model is estimated using pairs of symmet-

0,5F

0,075 : E
01 =

0,125F 3

n+l 015F = n+l
0175 =

02F ) =

450 prrrrrre RARRERERE RERREEEEE [T T T T T T T T T 2
g - Right wing st g
400 - «  Left wing :’ 4

350 E_ ty w & _f

n+l” n+l1

*,': E 150 - ; —f

250 E—

E : 5 E E Py E
E i E 100 - Lo 4
200 B 3 : L ]

150 . 3 sof

FIG. 9. First-return maps to a PoinCasection for(a) the asymmetric avatar of the Lorenz system #njd-(d) for the different RBF
models obtainedb) Map computed for a RBF model trained without any constraijsyith pairs of symmetrical centers but no constraints
on the weights, andd) with pairs of symmetrical centers and constrained weights.
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v 1v

t 200 1200
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FIG. 10. Image of the attractors of the RBF model trait@dvith pairs of symmetrical centers but no constraints on the weightgland
with pairs of symmetrical centers and constrained weights.

ric centers, both wings of the attractors are vis[téidj. 9(c)]. a perfect symmetry, well confirmed by the image first-return
To the eye the attractor looks symmetric. In order to checkmap[Fig. 9d)] since there is no longer a layered structure.
that carefully, an analysis in the image of this attractor must Finally, whensymmetricaldata are used in the training a
be performed. An image of a symmetric attractor is one of itsvery good model can be estimataithoutconstraints, as can
representations without any residual symmd®g]. When be seen in Fig. 11. The first-return map displayed in Fig.
the symmetry is exact as for the Lorenz system, a Poincargl(b) reveals that the Lorenz cusp is better represented by
section of the image of the Lorenz system provides the usudahe network trained from symmetrical data when compared
Lorenz map. When the symmetry is not exact, the first-returrio the networks trained with unsymmetrical data and symme-
map exhibits a layered structure as observed for data rery constraints. It should be pointed out, however, that the
corded on an electronic Chua’s circ[®3]. Thus, computing network that produced the results in Fig. 11 is not exactly
a first-return map in the image of a symmetric attractor helpgi.e., mathematicallysymmetrical.
to accurately check the quality of the symmetry of the dy-
namics.

An easy way for constructing the image of the attracting V. DISCUSSION AND CONCLUSIONS
solution of the RBF model estimated from pairs of sym-
metric centergFig. 7(c)] is to apply the coordinate transfor-
mation

Symmetry is important in a number of situations, for in-
stance, in order to reproduce some particular nonlinear phe-
nomena such as pitchfork bifurcations and some chaos pro-
ducing mechanismi34]. In order to illustrate the application
of the symmetry constraints for MLP networks, the well-
known Duffing-Ueda oscillator was used as a bench test.

_ 2 2
ut_xkixk+r’

U= 2XkXk+ 7 Many simulation results have confirmed that imposing sym-
metry on the network increases significantly the number of
We=X2 0., (15  networks that reproduce the desired dynamics. In a sense,

symmetry of the flow can be thought of aslgnamicalcon-

which defines a local diffeomorphism from the reconstructedsistency hint analogous to statistical hints proposed by other
phase spaceR3(Xy,Xqs . Xki2,) INt0 its image space authors[35]. When such constraints were not imposed the
R3(u,v¢,w,) [32]. The image attractor corresponding to the outcome was thano identified network was able to repro-
RBF model with pairs of symmetric center is shown in Fig.duce the pitchfork bifurcation, although some networks had
10(a). The Poincaresection is then computed in a standard saddle-node bifurcations instead, which actually had a simi-
way. The image first-return map exhibits clearly a layeredar appearancécompare Figs. &) and 3b)]. The need to
structure. The departure from the symmetry is still quite sig-use odd activation functions in MLP networks for the sake of
nificant in this model. The contributions of each wings aresymmetry has been previously observed by Bagarinao and
obviously organized in two different ways. In particular, the co-workers[11,36. On the other hand, in order to illustrate
right wing has three monotonic branches; the small increashe use of the symmetry constraints for the RBF networks,
ing one is not present in the original dynamjésg. 9(c)]. the Lorenz system was used. In particular, a set of data in

When the RBF model is estimated using pairs of sym-which the symmetry was not well represented was used for
metrical centers with constrained weights, the model symmenetwork training.
try and dynamics are significantly improved. In particular, In a recent paper that considered the Duffing-Ueda oscil-
the image attractojfFig. 10b)] presents a hole as expected lator [10], it has been reported that the authors were unable
from the original dynamics. The attractdtig. 7(d)] presents to find a MLP network with sigmoidal activation function
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FIG. 11. Results obtained with a RBF network trained from symmetrical data but with no symmetry constraints wha@devage
of the attractor(b) first-return map on which the data on the left and right wings are very difficult to distinguish.

that would display the same sequence of bifurcations as theetwork in such a way that learning becomes easier and usu-
original system. A possible explanation for the reported fail-ally more successful in especially hard problems. Without
ure is that the authors used sigmoidal activation functionémposing symmetry the resulting networks were not per-
which are not odd, as required by the results in Sec. Il C. Irfectly symmetrical but otherwise produced attractors that to
such a case, even if the bias terms were omitted, symmetifie eye seemed accurate.
would not be guaranteed. The relevance of the results in Sec. The greater potential for the techniques presented in this
Il C is highlighted by the fact that the sigmoidal and relatedPapPer IS for those cases when prior knowledge of the system
activation functions are the most frequently u$ad]. being symmgtncal is available and such a f(_aa_ture is not well
It is important to notice that, mathematically, the removal'€Presented in the set of data used for training. It is worth
of the bias terms and the choice of odd activation functions i$°NtiNg out _that in some cases the measulred data can be
not necessary since a MLP network with one hidden layer i ransformed in such away as to be sy_mme_tncal. If this were
a universal approximator. What is necessary is to satisfy E .he case, the techniques developed in this paper could be
(3) exactly. In practice, however, this is very difficult to sed_on th.e transformed data._
achieve because training is nonideal. A simple practical so;: It is believed that the relative lack of knowledge ab_out
lution to this problem seems to be the removal of bias term!x1OW r.1etwor.k r.no.dels relatg to the Qynamlcs could partlally
in addition to the choice of odd activation functions. If only explain their limited use n modell_ng nonllnear_ dynamics
odd functions are used, there is still no guarantee that th\Q’hen symme_try-relate_d_ ISSues are |m_po_rtant. This paper has
resulting networks will have exactly symmetrical fixed Shown sufficient con_dltlons that if satisfied by t.he topqlogy
points. In fact, even using odd functions pitchfork bifurca- of a MLP network will guarantee symmetry of fixed points.

tions could not be reproduced and have been classified angnarly, a procedure for ensuring symmetry in RBF net-

being more difficult to reconstruct when compared to othe orks has been proposed. Such resuilts S.hOU|d prove helpful

bifurcations[36]. to the wide body of network users _Who mtend to use this
The same reasoning of the preceding paragraph applies fgpe of models 10 reproduce specific nonlinear phenomena

RBF networks which are also universal approximators. ThéNIth symmetry properties.

constraints that have been developed and proposed in this

paper do not add to the network extra abilitiesthis were

the case it would be contradictory to the fact that such net- The authors are grateful to CNPq, FAPEMIBrazil),

works are global approximatgréut rather they restrict the and CNRS(France for financial support.
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