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All the information necessary to build a chaotic attractor
may be retrieved from the knowledge of a single
unstable periodic orbit. This statement is illustrated by
achieving a global vector field reconstruction of the
Rassler system from a period-1 orbit. Similarly, it is
shown that an intermittent behaviour may be
reconstructed by knowing only the laminar phases,

Reconstroction globale de champs de vecteurs d’attracteurs chaotiques A partir d*une orbite périodique instable

L’ensemble de I'information nécessaire & la construction d"un attracteur chaotique peut 8tre extraite de la connaissance d"une simple
orbite périodique instable. Cetie proposition est illustrée par une reconstruction globale d'un champ de vectzurs du systéme de
Réssler & partir d’une orbite de période 1. Selon cette technique, il est moniré qu’un régime intermittent peut &tre reconstruit A partir

des phases laminaires.

1. INTRODUCTION

An approach of great interest for the characteri-
zation of dynamical systems is devoted to the portrait
reconstruction from a scalar time series initiated by
Packard et al [1]. A more general approach is devoted o
global vector field reconstructions defined as follows.
Given a scalar time series for an observable, provide a
set of ordinary differential equations equivalent to the
original underlying system. There is a great deal of in-
terest in this problem {[2] and references therein). In
this framework, the natural question is to ask how many
unstable periodic orbits are necessary to achieve a glo-
bal vector field reconstruction. This paper shows that
the answer is 1.

The paper is organized as follows. Section 2
gives a brief presentation of the global vector field re-
construction of the Réssler system from the y-time se-
rics. Section 3 gives an example of successful recons-
traction from one periodic orbit for different values of a
control parameter. A qualitative discussion conceming
the information contained in the orbit allows to unders-
tand this fact for the Rissler system. Section 4 is devo-
ted to the case of an intermittent behaviour where the
laminar regime is very close to a period-3 orbit. It is
then shown that the intermittent dynamics may be re-
trieved by knowing only the Jaminar behaviour. Section
5 gives a conclusion.

2. GLOBAL VECTOR FIELD
RECONSTRUCTION
State space reconstruction is the ¢reation of mul-
tidimensional, deterministic state space from a time se-
ries. Let us start from a 3D time continuous dynamical
system given by the Rossler system which reads as :

k==y-z
y=x+ay (N
t=b+z{x—c)

with a control parameter vector (4, &, ¢). It is assumed
that the observer numerically (or experimentally) recor-
ded a scalar time signal, here taken to be y (f). A re-
constructed state space may be equivalently spanned by
delay coordinates or derivative coordinates [3]. Only
derivative coordinates are here considered. The aim is
then to reconstruct a vector field equivalent to the origi-
nal system under the form of a standard system [2]
made of the observable and its derivatives. From the y-
variable of the Réssler system, we found :

Y=Z
Z=X (2}
X=F,(XY,2)

in which standard coordinates (X, Y, Z) are the deriva-

tives (¥,y,¥). F, is a function of the derivative coordi-
nates here called the standard function which may be

mots-clés e keywords

thermodynamique des systémes complexes « mécanique des fluides » atiracteurs chactiques »

orbite périodique instable » reconstruction globale de champs de vecteur
complex thermodynamical system + fluid mechanics « chaotic attractors = unstable periodic orbit » global vector field

reconstruction

ENTROPIE n°202/203 1997 147



reconstructed by using a multivariate polynomial ap-
proximation on nets [2]. This approximation technique
is presented in the appendix A. The approximated stan-
dard function F, may be written as :

F=YkK,P* 3)
=
where P? designates the multivariate terms X! ¥/ Z* (sce
the appendix).

In order to evaluate the coefficients K > TECONS-
truction parameters must be introduced [2]. They are a
time interval 87 used to evaluate derivatives, the number
of points N, taken on the net, the number of points N,
sampled per pseudo-period T, and n the number of po-
lynomials in the standard function approximation. The
vector (61, N, N,, n) is called the reconstruction or dri-
ving vector,

When the original system is known, a standard
transformation @ expressing the standard coordinates
(X, Y, Z) versus the original coordinates (x, y, z) may be
obtained according to [2] :

X =ax+(a®-1)y-z

b={Y=y )
Z=x+ay

in the case where the y-variable of the Rossler system
constitutes the recorded time series.
The standard function F Y is then found to be [2] :

Fy=~b=cY+{ac-1)Z+{a-c)X
~a¥? +{a® +1)YZ— aXY - aZ? +XZ (5)

This is a very simple case where the standard
function F, is a polynomial function and may be exactly
expanded on E° (see the appendix). In such a case, the
natural specttum of K5 may be obtained versns the
control parameters (Table 1). The solutions of the re-
construction method are then very robust against
changes of reconstruction parameters [2], allowing us to
investigate opportunities without being worried by
accessory technicalities. In particular, successful recon-

P K, K »

1 -b = .2 - 1.999921
2 -¢ = -4 - 3.999950
3 ac-1 = 0.7318 0.731773
4 a-c = -3.56705 -3.566983
5 -a = .043295 - 0.432967
6 a2+l = 1.187445703  1.187429
7 -a = -043295 - 0.43295
8 -a = .043295 -0.432944
9 1 0.999980

Table 1. KX 's expressions versus control parameters of the
Réssler system. Note that the K, -spectrum is defined with
standard coordinates (Y, Z, X) taken in that order, according to
Rel. (4). Hence, for instance K, is (- ¢ ), not the coeffficient
{a - ¢) of the monomial X. Estimated values X P's for
a = 043295 are also given
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structions may be obtained with a driving vector (103,
10, 10, 10,) as shown in Ref [2]. Furthermore, it can ea-
sily be shown that the standard transformation < defines
a diffeomorphism between the original system and the
standard system, i.e. all the information about the dy-
namics is preserved, including in particular topological
equivalence,

‘We will now focus our purpose on reconstruction
of equivalent vector fields from y-time series of the
Réssler system.

3. RECONSTRUCTION FROM ONE

PERIODIC ORBIT

As in Ref [4], the Réssler system is studied on
the control parameter line {a, &, ¢) = (variable, 2, 4).
Three different dynamical behaviours may then be dis-
tinguished (i) the spiral-type (g = 0 43293) (ii) the fun-
nel-type (a = 0.523) which must be described by using a
4-letter symbolic dynamics and (iii) a type-I intermit-
tency for a = 0.409. Cases (i) and (ii) are discussed in
this section while the intermittent behaviour is conside-
red in section 4.

A. Topology

For a = 043295 , the asymptotic behaviour set-
tles down on a strange chaotic attractor which is charac-
terized by a two strand template given in Fig. 1.a,
achieving the topological characterization of the atirac-
tor [4]. A similar study will be carried out for a more
developed chaos (a = 0.523) for which the asymptotic
behaviour settles down on a strange chaotic attractor
which is characterized by a four strand template (Fig.
1L.b), in refation with the fact that the first-return map
presents four monotonic branches {4].

a) Spiral type

b) Funnel type

Fig. 1 Template of the Rissler system . the spiral type
{a = 043295) and the funnel type (a = 0.523 ) Period-1 orbit
encoded by (1) is constructed on each template.

B. Reconstruction

We now proceed to a global vector field recons-
truction by considering that the observable is the va-
riable y (section 2). Furthermore, the time series is
chosen to be taken from the periodic orbit encoded by
(1), topologically represented in Fig. 1. This period-1
orbit may be obtained by integrating the Réssler system
(1) starting from the initial conditions [4] ;



Fig. 2 Reconstructed attractor from the periodic orbit
encoded by (1) with the driving vector (103, 20, 10, 10) for
a=1043295

%o = 0.2296610494032504
Yo = —4.11575770590046 6)
2y = 0.4500602426204998

which define a point of the periodic orbit (1) for
a ={43295. With the number of digits given in Rel (6)
to represent the initial conditions, the trajectory remains
on the unstable periodic orbit for about ten pseudo-
periods T, before being ejected out of it. The driving
vector is taken to be (10-3, 20, 10, 10) , achieving a
sampling over two pseudo-periods, ensuring us that the
reconstruction is generated only by points on the orbit.
A successful reconstruction is then obtained.
Reconstructed X » -values are reporied in Table 1, in
excellent agreement with theoretical values. The chaotic
attractor generated by the reconstructed system is
represented on Fig, 2.

The first-retsrn map (Fig. 3) is similar to the ori-
ginal map [4] since the increasing branch indeed adjoins
the bissectrix line. We found that the reconstructed at-
tractor is topologically equivalent to the original attrac-
tor, i.e the chaotic attractor has successfully been re-
constructed from a single period-1 orbit

Fig 4 Reconstructed attractor from the periodic orbit
encoded by (1) with the driving vector (1073, 20, 10, 10) for
a=03523

P
15 =05 -135 =2.5 3.5 45
¥ii)
Fig. 3 First-return-map associated with the reconstructed
atiractor
C. Funnel type

A successful reconstruction is also obtained from
the orbit (1) with the same driving vector as in the pre-
vious subsection. K_-estimated values are reporied in
Table 2 showing again a very good agreement between
original and reconstructed values. Furthermore, the re-
constructed standard system again generates an attractor
which is topologically equivalent to the original one
(Fig. 4), and the associated Poincaré map is constituted
by four monotonic branches (Fig. 5) as on the original
attractor [4].

r K, K,

1 -2 - 2000021
2 -4 -3.999869
3 1.092 1091931
4 -3477 - 3476880
5 -0523 -0.523052
6 1273529 1273502
7 -0523 -0.523082
8 -0523 -0.522953
9 1 0599953

Table 2. Theoretical values and estimated values of &,'s for
a=10523

-5 T T T
| ]
=3+ p 1
z
=
2k 4
1t ]
0 1 X 1 1
0 -f -2 -3 ~ -5
()
Fig. 5 First-return map associated with the reconstructed

attractor. Four monotonic branches are present as on the
original Poincaré map
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D. Discussion

It has been demonstrated in section {3) that suc-
cessful global vector field reconstructions may be car-
ried out by relying only on the knowledge of the period-
1 orbit encoded by the sequence (1).

Acmally, such a success is rot very surprising in
so far as we have used a differential embedding. It es-
sentially results from the smoothness of the vector field.
Another point of view is to consider Rel (5) exhibiting 9
different values of X ’s. Therefore, evaluating Z; for
nine different locations is in principle sufficient to reco-
ver the X -spectrum. In principle again, any small por-
tion of the period-1 orbit (1), or of any piece of a chao-
tic trajectory, or even of a small piece of a transient be-
haviour, is enough to carry out a successful global diffe-
rential vector field reconstruction. Such features are
certainly a privilege of differential embeddings when
compared to time-delay embeddings.

In practice however, the success of a global vec-
tor field reconstruction from a small portion of a trajec-
tory should, for numerical reasons, depend very much
on the pertinence of the differential information contai-
ned in this portion, i.¢. 1obustness of the reconstruction
should depend on the amount and on the nature of the
information contained in this portion, in relation with its
modification through a change of the control parameter.
This issue is now qualitatively discussed.

Orbits (1) for a = 0.43295 and a = 0.523 do not
contain the same information since they allow the re-
construction of different attractors by using a global
vector field reconstruction. In order to exhibit the evolu-
tion of orbit (1), et us study its geometrical propetties,
The Rossler system (1) possesses two fixed points F
and F_given by :

2
_ c:‘i(cz—élab)hf —x, %

A= 5 Yr = P ’z;t=a

A 2D unstable manifold is associated with F_:
rajectories in this manifold spiral outward from F_[51.
The stable manifold is unidimensional. With the second
fixed point F are associated a unidimensional unstable
manifold and a 2D stable manifold on which wajeciories
spiral inward to F,. This stable manifold faces the fol-
ding region of the attractor in such a way that folding
may be associated with the rotation produced by F .

Consequently, one vortex may be associated with
each fixed point. Each vortex is characterized by an an-
gular speed w, and w_for F, and F_, respectively. These
quantities are determined by solving the characteristic
polynomial of the Jacobian given by :

“AB+la+x-c)A+x—c+az
+Hac—ax—-1-z}A=0 N
at F_and F . The eigenvalues are found to read as :
p_xiw_ = 01481087 £i0.975955
{-l_ =-3.63360630

and
{p,,, *iw, =-0.08145529 + i3 108388

A, =0.36619954
160 ENTROPIE n°202/203 #1937

Let us remark that the value of the pseudo-period
7, may be approximatively evaloated as :
' 27

T=L=643s ®
w.

By inspecting the values p_ and w_, the original

_ Hopf bifurcation is found to arise for a; = 0.12496 for

which we have then p_ = 0 and w. = 1. For this a-value,
the first limit cycle is born, namely orbit {1). A bit
beyond a,,, orbit (1) is essentiaily driven by the vortex
associated with F_ and describes an ellipsis which is
contained in a surface approximatively plane and paral-
lel to the plane (xy).

Fy

e

z
L

- X
Fig. 6 Evolution of orbit (1) : a part of it leaves progres-
sively the original plane following the z-direction under the
increasing influence of the vortex associated with F

As the parameler g is increased, the fixed point

F, comes closer to F_. Its vortex becomes more influent
on the attractor and, consequently, on orbit (1), ie. a
part of orbit (1) leaves progressively the original plane
in the z-direction (Fig. 6). Then, its differential struc-
ture changes and both its length and time period 7 (1)
grow. It then appears that 7 (1) is a monotonic signature
of the differential structure of orbit (1) as displayed in
Fig. 7, showing T (1) versus a. Therefore, a sufficient
information related to orbit (1) is exhibited. The infor-
mation necessary to global vector field reconstruction is
of a differential nature,

640 r : .

630 | b

T(1) (s

6 20 A 1 1 1
035 0.40 045 050 055 0.60

a
Fig 7 Evolution of the time period T (1) versus the
a values

4, INTERMITTENT BEHAVIOUR
An intermittent behaviour may be decomposed
into laminar phases, where the dynamics remains see-



mingly periodic during long time intervals, and bursts
abruptly disrupting the regular behaviour. The laminar
phases are very close to a periodic orbit. Therefore, it is
expected that we should be able to reconstruct an equi-
valent vector field from laminar phases only, in a way
similar as from period-1 orbits in the previous section.

A, Type-I intermittency

This behaviour appears before a tangent bifurca-
tion which will imply the birth of a limit cycle and of an
unstable periodic orbit [6]. It takes the form of laminar
phases where the trajectory is very close to the limit
cycle, interrupted by chaotic bursts. The averaged
length L of the laminar phases evolves according to :

Leg™@ )]
where grepresents a distance to the tangent bifurcation
and ¢ is equal to 1/2 [7].

Hirsch et al [7] have shown that the type-I in-
termitiency appears in the logistic map just before the
creation of a limit cycle of period 3. They characterize
this behaviour by the probability distribution P (L) of
the length L of laminar phases.

Similarly as for the logistic map, the Réssler sys-
tem presents a tangent bifurcation before the apparition
of the limit cycle of period 3 {8] for a = a, = 04091200
(b=2, c=4).1fais greater than a_, the asymptotic be-
haviour is a limit cycle of period 3 and, consequently,
the time series of the observable y exhibits three diffe-
rent minima, here called y,, y, and y, in a decreasing or-
der. Consequently, y, is the smallest minimum. For
a < a,, In a laminar phase, the smallest minimum y,,,;.
(&) of the y -time series evolves in the neighborhood of
¥; In order to define the laminar regions, we introduce
an acceptance criterion on deviations of y,,;,
according to :

Ymin (1) — Y3 S k{31 — ¥3) (10)

where k& must be small. It is arbitrarily chosen equal to
2/100. If this condition is realized, asymptotic behaviour
is very close to the limit cycle and, consequently, is on a
laminar phase ; if it is not, then the evolution corres-
ponds to a burst. The evolution of the maximum laminar
phase length L versus ¢ is represented by the dashed
line in Fig. 8. This evolution is in agreement with Rel.
{9) in which o is found to be equal 1o 0 53 £ 0.01, very

T T T T T T T

02 o Original system M
€ L i
x, 01 1
0.0 " 0. n_rm-rﬂf”
0 200 400 600 800
Length (s)
Fig. 9 Probability distribution P (L)

close to the theoretical value [7]. The probability
distribution P (L) is represented in Fig. 9.a evidencing
the existence of two principal characteristic lengths for
short and long laminar phases in agreement with the be-
haviour exhibited by Hirsch et al in the case of the
logistic map.

3.3 T ; T ‘ T
R i
——\g 30 :' - e - _—
3 2.5 e -
k’o | ~ B
S 20 Fe
~ - * 1
] 5 L I 1 | 1 {
—6.2 -3.2 —4.2 -32
Log(e)
Fig & Evolution of the maximum laminar phase length
L, .. Dashed line . original system,” . reconstructed system

B. Reconstructed intermittency

A reconstruction of a global vector field equiva-
lent to the Réssler system is now carried out with the
same method than in section 3. We have stated in sec-
tion 2 that a satisfactory reconstruction is feasible with
only N, = 10 points on the net. For the intermittency
case however, the results depend on the location of the
net points along the trajectory. It then appears that, with
a driving vector (103, 10,10, 10), three kinds of recons-
tructed asymptotic behaviour may be observed depen-
ding on the runs~: i) chaotic behaviour without any la-
minar phase, ii) intermittent behaviour with laminar
phases during from 200 s up to 1000 s, in contrast with
the fact that the maximum length of laminar phases is
about 190 s for the original system and iii) a limit cycle
of period 3 01 9.

The values of the K -coefficients K, K, and K
are the most sensitive with respect to the location of the
net points. However, all these side effects are killed
with a driving vector (10-3, 20, 10, 10}, i.e. with N, =20
instead of ¥, = 10. The maximum length L, of L?'ne re-
constructed regime is computed versus € and displayed
in Fig. 8, in very good agreement with the results from
the original system. Such reconstructions work indiffer-
ently as well for points taken from the laminar phases or
from chaotic bursts, When & becomes very small
(€ £ 109, N, must however be increased up to 30 to

e I
02 Reconstructed system |
Q B .
a, 0.1 -
0 200 400 600 800

Length ( s)

a) the original system . (a, b, ¢) = (040011, 2, 4), i e. £ = 10 This is a Type-1 intermittency (200 laminar phases are taken

into account)

b) the reconstructed system with the driving vector (10°3,20,10,10) . (a, b, ¢) = (040911,2,4 }. P (L) is very close to the one

associated with the original system
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avoid limit cycle reconstruction instead of intermittent
behaviour reconstruction. For £ = 103 (g = 040911) ,
the probability diswribution P (L) of laminar phase
length L is computed for the reconstructed system with
the driving vector (10-3,2 0, 10, 10) with points choosen
in a laminar phase and displayed in Fig. 9.b. The
agreement between the original system (Fig. 9.a) and
the reconstructed system (Fig. 9.b) is very good, except
that the maximum Iength is slightly underestimated in
the reconstructed system.

5. CONCLUSION

It has been demonstrated that a very small
amount of information is sufficient to reconstruct a
vector ficld equivalent to the vector field of the original
underlying system. In the Rossler case, a period-1 orbit
encoded by (1) provides a sufficient knowledge about
the dynamics to recover the complete attractor by using
a global vector field reconstruction method with deriva-
tive coordinates. We explain such powerful results in
terms of the differential structure which is taken into ac-
count by derivatives. Another example concerns the
study of a type-I intermittency, The reconstruction is
successfully achieved from a small amount of data taken
from the laminar phases. We believe that such results
should encourage us to a systematic study of differential
embeddings and reconstructions which have been
underdeveloped when compared to delay techniques.
Let us note that these techniques may be applied to
experimental systems, as for the study of electrodis-
solution [9] [10] or the characterization of Cepheide
stars. In the last case, it has been shown that the com-
plex thermodynamical system constituted by such a star
reduces to a dynamical system with three degrees of
freedom [11].
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Appendix A

Approximation on a multivariate
polynomial basis

1. Functional space E"

The function F is projected on a space £* of po-
lynomials. These polynomials depend on the derivative
coordinates (X,, X, , X ), therefore involving terms rea-
ding (X}, X4,X%). As detailed in Ref [2], we first define
monomials P* by considering the ordering of miplets
(). k:

000
100 010 001

200110101020 011 002 A

which are nombered by taking the natural numbers
n € Nin the same ordering :

1
2 3 4

56 78910 42

defining a one-to-one relationship between triplets
(i, j, k) and natural numbers n € N, Then the following
convenient notation is introduced to define the mono-
mials P* :
P"=X'yiz* (A3)

Vectorial space E® is constituted by the linear re-
lations on monomials Pésuch thati < n,ie. a basis of
Er is {P'}. We afterward build an orthonormal basis
{¢*} from the basis {P¢}.
2. Orthonormal basis

In this paper, the basis {¢*} is built by wsing a
Gram-Schmidt orthogonalization procedure, leading to
a somewhat more compact formulation than in Ref, [2].
According to this procedure, the functions ¢*read as:

¢
ot =m0y (A4)
¢ 3
in which elements ¢"* are defined as :
= (A5)
¢*k =Pk _Z(Pk'¢a)¢a,k>l
a=1

in which (, ) designates a scalar product. The orthe-
normality condition reads as :

(¢'.07)=35; (A6)



where §; is the Kronecker symbol. Rels (A4) and (AS5)
imply that ¢*'s define a multivariate triangular family of
polynomials given by :

o' =4l

¢ =Al+ AX

9= A} + A3X + AdY

ot = Al +AJX + A}y + AJZ

P = A+ X+ AY + A Z+ AIX?

The projection of a monomial £* on the ortho-
normal basis {¢} reads as :

k
=Y Big® (A7)
a=1
The expansion coefficients BY then read as ;
BE =(P*.0") (A8)

Conversely, each function ¢* may be expanded
on the basis {P/} according to :
E
¢t =Y akpe (A9)

a=1

Therefore, coefficients B}‘ alsoread as:
I
=Y aj(P*,Pe) (A10)

Inserting Rels (AB) and (A9) in Rel. (AS), we
obtain :

AJSP*=P*- BEY Alpe
az-l Z‘ ? az,{ (A11)
4t = agfe™]

With a permutation on the sums :
k-1 k-1

WIS WY o

B=la=1 a=lf=a

we obtain :
k k=11 k-1
> atpe=pr -3 N kAR [Pe (AD3)
a=1 a=1\ f=a
Ieading to the following recurrence relations -
Ak =1
foroa<k (Al4)

k-1
- BAL
p=a

Cocfficients B may then be substituted in terms
of coefficients A/ by using Rel (A10), leading to :

k-1 B

A== ARl AB(PEPT)|  (Al5)
B=c =1

Finally, once the coefficients A are obtained,

we may evaluate the coefficients A" of the orthonormal
basis by using :

Al = A 7 (Al6)
k£ k
Shswer)

3. Fourier approximation

At this step, we possess a complete basis of n
orthonormal polynomials ¢*. We then look for an ap-
proximation F of the standard function F, knowing the
values of F on a net (X, ¥;, Z;), in which the net is for-
med from the values of standard coordinates at discrete
times { , i.e. for instance :

F(X,Y,Z)=Z (A1)
The best L, -approximation (in the least square
sense) is given by :

F=Yc¢! (A18)
i
in which c; are the Fourier coefficients reading as :

=(F.¢/) (A19)
We thus have :

= [z , iA,fP*J (A20)
k=1

The approximation of the function F on E* may
also be written versus P/ according 1o ;

ZZC Alpl = ZZC AP (A21)
=l j=i J=li=jf
in which » is the number of polynomials taken in the
expansion of Rel {A18).
Intreducing the following notation :

n
K,=) 4l (A22)
i=p
Rel. (A21} may be rewritten as :

F=Y%K,pP* (A23)
p=1
All the information concerning the chaotic
attractor is therefore encoded in the set of coefficients
K, which forms a signature of the attractor. Hence, the
set {K P} is called the natural spectrum of the attractor.
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