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Different types of chaotic flow are possible in the 3.dimensional state spaces of two simple non-
tinear differential equations, The first equation consists of a 2-variable, double-focus subsystemn
complemented by a linearly coupled third variable. It produces at least three types of diaos:
Lorenzian chaes, “sandwich” chaos, and “horseshoe” chaos, Two figure 8.shaped chaotic regimes
of the latter lype are possible simultaneously, running through each other like 2 links of & chain.
In the sccond equation, a transition between two different types of horseshoe chaos {spiral chaos
and screw chaos) is possible. While sandwich chaos allows for a genuine strange atiraclor, the
same has nol yet been demonstrated for herseshoe chaos. Unlike the situation in the analogous
I-dimensional case, an emergent period-3 solution is not necessarily stable in the horseshoe. Since
chaos is & “super-oscillation” (emergent with the third dimension), the existence of “super-chaos”

is postulated for the nect level.

A six-minute, super-8 sound film, demonstr

atiné the different behavioral modes and their

bhifurcations in the 2 equations, has been prepared. Chaos sounds as musical as a snere,

1. Introduction

Chaos is, hesides sieady slate and limit cycle,
one of the few basic modes of qualitative behavior
possible in nonlinear dynamical systems. It is ob-
served in an idling motor, in a flickering neon tube,
in a dripping faucet, in a rolating neutron star Lin
lasers 2, in populations 3, and of course, in hydro-
dynamics * 3, It is ubiquitous not only in nonlinear
difference equations of one*# %79 and two dimen.
sions 1712, but also in 3- and more-variable or-
dinary differential equations. This is lo he demon-
strated in the following with two prololypic equa-
tions. The behaviour of these equations can-in all
cases he understoad m terms of “folded” Poincaré
maps.

2, An Artificially Composed Lorenzian Equation

The 3-dimensional flow reproduced stereoscopical-
ty in Fig. 1 resembles closely the well-known chaotie
flow existing in the Lorenz equation? of turbulence,
The equation underlying the present flow is

T=r—ry—3,
it —ay, (1)
r=bar—cz+d.
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Fig. 1. Trajectorial flow showing Lorenz-type chaos in
Equation (1), Stereoscopic view. {Parallel projections; the
left-hand picture is meant for the right eye and vice versa.
Try to cross your eyes hy fiest bringing a pen in such a
position that the two pictures coincide — without being
sharp vet behind the pen. Then just wait.) Numerical
simpfation on a HP 9820 A calculator with peripherals,
wsing & standard Ruge-Kutta-Merson routine (adapted by
F. Gébber). Parameter values assumed: e=0.1. b=0.08,
e=0.38, d=0. Initial values: z(0) =105, y(0) =108, z()
=105 t=0, ..., 517, Axes: —1.8, ..., +18 for r; 0,
cves L8 1or y; —0.18,..., +0.18 forz.

The subsystem (x, y) is a double-focus system
(Fig. 2), i z=const =zero. The addition of the
third line renders the 2 foci unstable (one for z=
+ const, the other for z = — const). More important,
- has been coupled to x in such a way that the whole
How may “cross over” in front of the former -
separatrix of the saddle in Fig. 2 if x>0, and back
hehind it if x < 0.

Feuation (1) was devised in order to verify a
prediction ¥ about the functioning of the l.orenz
equation: After the observation that this equation
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Fig. 2. Trajectorial flow in a focussaddle-focus system
{schematic}.

becomes a double-focus system if 2 of its 3 variables
(x and y) are contracied lo a single one, the idea
had occurred that the main effect of the “split” into
2 variables may consist in allowing the flow to get
around the formerly one-dimensional er-separatrix
of the saddle as a pivot.

Equation (1} has the asset that the functional
ingredients remain betler visible in the whole equa-
tion, so that it can be modified more easily in
order to test further predictions.

Williams ** recently indicated a paper-sheet model
' (Fig. 3) which permits to derive the structure of
“Lorenz attractors’”’. The model applies as well io
the flow of Figure 1.

Fig. 3. A paper-sheet model of Lorenzian flows (after H),

In the following, several move behavioral modes
of Eq. (1) will be described. Hereby similar paper
models will be useful. Most probably, the same
pictures can be obtained also from the Lorenz
equation, no matter whether it is interpreted as a
model of convection ! or as a laser model 2,

3. *Sandwich Chros” in Equation (1)

Figure 4 shows another trajectorial fow obtain-
able with the same cquation. The main difference is
that the parameler d is nol zero this time. The
following paper model lakes account of this flow
(Figure 5). The inserted arrow, P, indicales that
a simple Poincaré map ean be expected to exist. As
the real flow (of Fig. 4 and especially of Fig.6)
shows, there is a “critical amplitude™ around the
lower left focus. It consists of all those trajectories
lying in the saddle’s m-separairix {which now is

2.dimensional surface possessing internaily the
flow-properties of a stable node). All trajeciories
crossing this plane come back (are “re-injected”)
through a roundabout excursion. Therefore, the
Poincaré map through the actual flow (of. Fig. 4
or 6) looks like Figure 7. The choice of the term
“sandwich” map is explained in Figure 8, (Note
that a soft, “American style”, piece of white bread
has been assumed in order to account for the singu-
larity in the former middie of the cross-section.}

Fig. 4. “Sandwidi-type” chaos in Equatien {1). Streoplot as:

in Figure 1, Assumed parameter values: a=0.1, b=0.07,

e=0.38, d=10,0015, Initial values as in Fig. 1; t=0, ...,
614, Axes as in Figure 1.

N

Fig. 5. Paper model 1o the flow of Figure 4.

; X : X

Fig. 6. Another view on the flow of Figure 4. Axes: —1.2,

voe L2 for 2 0, ..., 14 for y; —0, ..., B for oz,
t=0, ..., 336.
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Fig. 7. Poincaré map through the lefi-hand part of the flow
of Fig. 6 (schematic drawing).
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Fig. 8. The sandwich map.

The properties of such maps (which are related
to the so-called Baker transformation '®) are inter-
esting in their own right, At this place, it suffices to
note that as long as the sandwich is sufficiently
“thin” and the cut is sufficiently “vertical”, most
properties of the map will be just those of the cor-
responding one-dimensional analogue. According to
Li and Yorke?, period 3 implies chaos. Thai is to
say: whenever two ascending moves inside the map
followed by a descending move below the initial
point are possible, an infinite number of unstable
periodic solutions (“chaos”) exists. (Note that in
the case of Fig. 7, “ascending” means: to the right.}
The question whether a weaker criterion (like “finite
overlap”) is already sufficient in the present case,
may he worth looking ai. The main point here is
that, due 1o the map’s nondifferentiable extrema,
the presence of stable attractors among the infinite
set of periadic solutions determined, can be ex-
chuded for finite sets of parameters (see®? and
below). Since the whole map acts as an atiractor for
trajeciories coming from the outside, such absence
of attracting periodic solutions implies that the
whole chaotic flow acts as a strange atiractor {in
the sense of Ruelle and Takens %),

4. Two Intertwined Limit Cycles

As Figs, 9 and 10 show, iwo mutually inter-
twined limit cycles are also possible in Equation
{1}. This occurs if {2} a piece of flow that has
passed above the saddle’s m-separatrix relurns
nhove the separatrix again, so that a doubly hwisted
band containing a symmetrically placed periodie
formed, and {b) this symmetrical

solution  is
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periodic solution is unstable. The unstable sym-
metrical solution then acls as a separairix, eulting
the band in 2 bands (as seer in Fig. 10}, each of
which may contain a stable limit eycle. (It is nice
to verify that a doubly twisted band, when cut in
2 halves, yields two interlinked doubly twisted
bands.) There is one further peculiarity visible in
Fig. 9: either stable limit cycle is approached, by
trajeclories that come from the inside and by
trajectories that come from the outside, from the
same side finally, Evidently, a certain “folding” of
the cross-section is invelved, such that originally
more “outer” trajeciories finally lie beside formerly
more “inner” trajectories.

/ Z

: A
Fig. 2. Two intertwined limit cycles in Equation {1}, Stereo-
plot as in Figure 1. Assumed parameter values: a=0.04,
b&=006, ¢=0.36, d=0. Initial values: () =—0.1, »{0)
=1.2, z(0)=—0.04; t=0, ..., 510. The right-hand cycle
is a “continuation”, with =(0)=—x({510), y{0) =y (510},
2{0) = —3z(510}; =0, ..., 133. Axes: —1,..., 1 for x;

G,..., F2fory; —0.1,...,01 forz

Fig. 10. Paper model to the flow of Figure 9.

5. Double-horseshoe Chaos

In Tig. 11, the above-mentioned possibility of a
Li-shaped self-overlap of the cross-section is realized
in a more conspicuous fashion. The cross.section
looks like a guestion mark (without dot), with the
unstable limit cycle lying at the symmetry center.
The outer portion of either hal{-map has the form
seen in Fig. 12 (bottom): A rectangular cross-




section is being folded over itself between one
return and the next. The result is a horseshoe-like

(walking-stick-like) figure.

Fig. 11. Two intertwined chaotie regimes of horseshoe type

in Equation {1). Stereoplot as in Figure 1. Assumed parame-

ter values: a—=0.04, b=0.06, ¢=0.326, d=0. Initial values:

»{0) =—0066, y{0)=08, z(0)=—0.006; ¢=0, ..., 45L

The teft-hand side is a “continuation” as in Fig. 9; =0,
.. .5 423, Axes as in Figure 9.

R

Fig. 12. Reguirements for period 3 to be possible in a
“hairpin” map {top) and a corresponding “horseshoe™ map
{hotiom).

The propertics of such maps ' 17 are, unlike
those of Smale’s? horseshoe maps (which are a
special case with more overlap, so thal only &
strange repeller is formed), largely unknown still,
Only the “compressed” (that is, lL.dimensional)
case which happens to be identical with the Li-
Yorke? map, is better knownt % 1t is displayed
in the top part of Figare 12,

The Li-Yorke theorem? {“period 3 implies
chaos”} means that any overlap in whidi two
ascending moves followed by a descending wove
below the initial value are possible, is sufficient 1o
genevate periodic solutions of «ll integer periodi-
cities. Such a critical overlap is, as illustraled in
Fig. 12 {top), present if two consecutive steps can
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be iraced backward and downward, siarting from
the summit (arvow) and using the first hisector as
shown. Actually, a somewhat smaller degree of
overlap is necessary for chaos (that is, an infinite
number of periodic solutions). This is because the
very criterion just used is already fulfilled for some
higher iteration of the map before it applies to the
map itself &,

A second Tesult is that period 3, when oceurring
under an increase of overlap for the first time, is
stable in smooth maps like that of Fig. 12 {top)®?®.
'This is simply due to the fact that every solution
that passes-exactly through the summit is complelely
insensitive toward infinitesimal perturbations. The
result is generic, meaning that for almost all over-
laps generating chaos, there exists a periodic at-
tractor inside the box?. Thus, the Li-Yorke box
(Fig. 12 top), which is attracting from the left side,
usually does not imply the existence of a strange
attractor (consisting of nonperiodic and unstable
periodic solutions only 7). Nonetheless, the solutions
behave as if there were a slrange “quasi-atiractor”
(since the solutions are “caught” by the periodic
atiractor usually after a very long time only). The
system’s behavior is thus comparable to that of a
monoflop (in which a quasi-attractor disappears
in a temporally parametrized catastrophe ') with
two differences: (a) the final hehavior is periodic,
(b) the transition times are not fixed but vary in a
probabilistic manner.

Returning to the 2-dimensional map, a counter-
example to the stability-of-emergeni-period-3 rule ex-
ists (Figure 13). A horizontal perturbation vecior is,
as shown, not “orthogonal” to itsclf after onc round
of propagation. This is due to the assumed bending-
over of the left-hand part of the horseshoe (cor-
responding lo an incipient multiple folding of the
horseshoe; sce below). Nonetheless, the more
general question whether a genuine strange attractor
is generically possible in a 2-dimensional horseshoe
map of the walking-stick type, is still open 19,

Fig. 13. Emergent period 3 is not stable a figure-7 shaped
“horseshoe' map. o =: perindic selutien, — = perturbation,
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One interesting property of the walking-stick
horseshoe map may be finally mentioned: There
exists, beyond a certain critical overlap, a “fixed
line” (whose points are not all fixed poinis) inside
the map. (Imagine what remains of a sausage that
has been folded over itself, and put back into itself,
for a large number of times.) The fixed line has un-
bounded length generically, is of measure zero, and
is the geometric locus of all limiting solutions. The
line itself is the analogue to the fixed point of a
one-dimensional diffeomorphism, Using this concept,
the above question can be put more succintly: Is
there always at least one “contracting spot™ on this
infinitely expanding line?

6. Serew-type Chaos in Another Equation

Recently, another, chaos-producing  equation
which is even simpler than Eq. {1) has been pro-
posed 2°;

R
J=x+eay, {2)
i=btrz—cz,

This equation, which contains just one nonlinear
term of ‘second order, produces horseshoe chaos of
the ordinary (“spiral”) type 20 with the outer-
most part of an unwinding spiral being re-injected
toward the neighborhood of the unstable focus.
Figure 14 shows that the same equation can give

Y

Fig, ¥4, Screw chaos in Equation {2). Stercoplot as in
Figure 1. Assumed parameter values: a=0.55, b=32 r=4.
Initial values: r(0) =@ =z{0)=1; t=0, ..., 94, Axes:
—-10,...,10 forzandy, 0...., 10 for z.

tise to a second type of singularity-free (that is,
horseshoe) chaos, termed
formerly found in a more complicated equation
from reaction-kineties 7. An inspection of the flow

“screw” chaos when

0. E, Réssler, Diflerent Types of Chaos

(IFig, 14) reveals tha! the “width” of a cross-section
through the flow is remarkably great in the present
case, The figure further makes plausible the fact
(which would require a whole series of piclures
for its full demonstration) that the difference be-
tween both types of horseshoe chaos is only a matter
of the degree of overlap: By continuously increasing
the parameter g in Eq. (2) from near-zero values,
first an ordinary (“period ene”) single limit cycle
appears, then a double-looped one (“period two”),
then spiral type horseshoe chaos (with a “period
three” limit eycle in between), then horseshoe chaos
with a multiply folded underlying horseshoe map
— which is nothing else than the “srew” case visible
in Fig, 14 (cf. "), Finally, the system “explodes”.
This occars when a separatrix existing hetween the
attracting chaotic regime and an allractor at in-
finity, has entered the domain of the herseshoce
map. It is then only a mabter of time until the
system’s state finds its way out of the “horseshoe
maze”, in order to escape to infinity. The system
hereby is globally unstable {although this may not
be recognizable for a long time).

Al these bifurcations, as well as the majority of
those deseribed above for Eq. (1), arc displayed on
a O-minute super-8 film. The film, which was taken
from the oscillograph of a rapid analogue computer,
has a sound track, so that the different types of
chaos described can be listened to. {The sound is
not unmusical — much like snoring.) The film is
presented together with this paper.

7. Concluding Remarks

The above presented material shows that so-called
dynamical pathologies®! (like horseshoe difico-
morphisms 1% and strange atiractors®) are not at
all “pathological” in continuous systems of more
than two dimensions. Recenily, chaos was also ob-
served in a strongly nonlinear 4-dimensional Hamil-
lonian system?! and in a 2.morphogen abstract
reaction diffusion system® in the d-variable com-
partmental approximation. Ii is apparently possible
also in 2-variable excitable media 23 2,

The preceding pictures show, further, that the
bifurcations under which chaos appears, are basical-
ly simple (although they can probably no longer be
discussed in & non-geometric context).

It can be concluded, therefore, that “chaos” is
bound to become another dynamical paradigm in
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Fig. 15. Emergence of new attractors with increasing number
of dimensions, See text,

the applied sciences, much as “steady siate” and
“gscillation” already have. Its bifurcations are also
truly “catastrophic” in some cases, filling with life
the Lwo notions of “generalized catastrophe” and of
“infinitely intermingled basins” of Thom ',

While the physical applications — especially to
cooperative systems, including the laser? — need
not be stressed, the possibility that chaos may play
adaptive roles in biology is especially exciting.
Neural noise, eytoplasmatic molien, morphogenesis,
endocrine regulation, behavior control, and the main-
tenance of genetic randomness, are possible examples,
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Let me close with a speculative mathemalical
picture (Figure 15). In the lefthand column, the
usual limitations of one and two and three dimen-
sional flows are shown: in l.dimensional systems,
a stale point that has left a particular position can
never retwrn to it; in 2 dimensions, the Jordan
curve plays the same restricting role; in 3 dimen-
sions, there is the analogue of a “transversal closed
surface”. Especially the 2-dimensional limitation is
well-known from applications {like the Poincaré-
Bendixson theorem). However, there is a positive
counterpart to these restrictions. As indicated in the
middle and right-hand columns, the addition of a
new dimension has a similar “liberating” effect in
all cases. When the second dimension is opened up
as a possible “youndabout” way (first row), a new
phenomenon, not possible in one dimension, is
created: periodic behavior, with a corresponding
new limit set (the limit cycle). The creation of the
latier follows from the possibility of “culling
through” the roundabout loop {that is, from the
1-dimensional Poincaré map that is now formed).
Similarly, a 2-dimensional flow can be sent through
the third dimension and back, with a 2-dimensional
(and potentially folded) Poincaré map determining
what happens (second row). It is a natural question
to ask whether this process can be iterated. The
prediction is that, just as chaos is a sort of “super-
oscillation” (and oscillation is a sort of “super-
steady state”), a sort of “super-chaos” should fol-
low from the re-injection possibility through the
fourth dimension (ihird row), and so forth.
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