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Chaotic oscillations in an electronic circuit are studied by recording two time series simultane-
ously. The chaotic dynamics is characterized by using topological analysis. A comparison with
two models is also discussed. Some prescriptions are given in order to take into account the
symmetry properties of the experimental system to perform the topological analysis.

1. Introduction

Recently many papers have been devoted to globat
vector field reconstruction from a scalar time se-
ries [Packard ef al, 1980; Crutchfield & McNamara,
1987; Farmer & Sidorowitch, 1987; Agarwal et al,
1990; Breeden & Hiibler, 1990; Casdagli et al., 1991;
Giona et al, 1991; Palus & Dvorack, 1992; Goues-
bet & Maquet; Gouesbet & Letellier, 1994; Brown
et al., 1995; Letellier et al., 1995a, 1995b]. In par-
ticular, the extraction of & set of equations which
model the dynamics has been successfully achieved
from experimental data generated by a Belousov—
Zhabotinskiil reaction {Brown et al, 1995] or by
a copper electrodissolution [Letellier et al, 1995a,
1995b|. Nevertheless, an important question is how
to introduce an equivariance property in the recon-
structed vector field and, therefore determine the
symmetry properties of a system from a scalar time
series? This issue is significant because it has been
shown that, in the presence of symmetry, the dif-
ferent variables required to span the original phase
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space are not necessarily equivalent from the recon-
struction method point of view [King & Stewart,
1992]. In particular, the dynamics induced by dif-
ferent variables may be topologically different. This
problem principally arises when a system may be
described by equivariant or invariant variables as
well exemplified by the Lorenz system [Letellier &
Gouesbet, 1996).

For instance, it has been shown that an equiv-
ariant variable always induces phase portraits which
present an inversion symmetry. This symmetry may
be different than on the original attractor as in the
case of the Lorenz system where the original at-
tractor presents an axial symmetry [Letellier et al,
1994]. As stated by King and Stewart {King &
Stewart, 1992], a phase portrait may be recon-
structed with an axial symmetry by using two scalar
time series, one equivariant and one invariant. Con-
sequently, it is of importance to correctly define the
nature of the equivariance when one likes to perform
a precise reconstruction of a set of equations.
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This paper is devoted to the topological analy-
sis of experimental data generated by an electronic
circuit [Rulkov et al, 1992, 1994} where symme-
try properties are present. Section 2 is devoted to
a brief review concerning symbolic dynamics with
many symbols. Section 3 discusses the topological
analysis of the experimental data which are given
under the form of two time series recorded simul-
taneously. Comparisons with Chua's system and
a model proposed by one of us is given in Sec. 4.
Section 5 is the conclusion.

2. Symbolic Plane

In order to achieve a topological analysis of the at-
tractor generated by the electronic circuit, we use
common concepts from the topological characteri-
zation theory such as templates, linking numbers
and symbolic planes. We shall have to character-
ize the population of periodic orbits of a quartic
map, i.e. constituted by four monotonic branches.
Consequently, following recent papers [Fang, 1994;
Fa-Geng, 1994; Duan et al, 1994], we have to
introduce the symbolic coordinates.

In the case of a quartic map (Fig. 1), three crit-
ical points C; define a partition of the attractor and
any trajectory may be encoded by using:

if T < O

if C1<z,<Cy (1)
if Co <zp < Cs

if Cy <z,

an=

N = O
—
feriy

where o, Is the code of the nth intersection of the
trajectory with a Poincaré plane.
Thus, a chaotic trajectory forms a string

§=...0. 3030 100010205 ...

where og is the present, o_; the past and o; the
future (¢ > 0). Let sf be the substring {#;}2, on
the future and s, the substring {cr_z-}f;ﬂ on the
past in which D may be taken as equal to 186.

The forward symbolic coordinate reads as [Fang,

1994]:

'D f
alsp) =Y 5 (2)
i=}1

\
C
C )
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CE
=
X
Fig. 1. A quartic map.
where

0 0

2 i

Hi = 9 for o; = 5
0 3 (3)

if Z‘Ti = 0 (mod 2)
j=1
and

3 0

=41 fo =1t

M = 1 r &, = 9
3 3 (4)

K
if Zo‘i =1 (mod 2)
j=1

This forward coordinate a(ss) gives the mul-
timodal order of the symbolic sequences following
the natural order of the real numbers on the inter-
val [0, 1]. Then, a symbolic sequence W; is said
to be implied by a sequence Wy if ay, < aw,.
As a period-p orbit may be encoded hy p symbolic
sequences Wj, the so-cailed orbital sequence (W)
is the cyclic permutation W; implying the (p — 1)
others. By ordering the forward coordinates of the
orbital sequences (W)’s, we obtain the forcing or-
der of the orbits. For instance, the orbit encoded by
{W2) forces the orbit encoded by (W) if a(W)) <
a(Ws). All orbital sequences of orbits whose period
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Table 1. Forward coordinates associated with is less than 5 are reported in Table 1 with the asso-
orbital sequences of orbits whose period is ciated forward coordinates.
less than 5. Nevertheless, a quartic map for which the cre-
- ation of periodic orbits under the variation of a con-
W) (W) W) «(W) trol parameter is given by the forcing order is rather
1 0.3909 320 0.8615 a marginal case. As shown by many workers [Fang,
10 0.4705 3203 0.8627 1994, Fa-Geng, 1994; Dutertre, 1995), a quartic
1011 0.4T47 3902 0.8638 map does not necessarily exhibit the forcing order
101 0.4751 3201 0.8705 given by the forward coordinate and, consequently,
100 0.4923 3200 0.8715 in order to have a good knowledge of the popula-
1001 0.494] 3100 0.8784 tion of p’eriodic‘orbits, a k.n.eading' sequence has to
1600 0.4980 3101 0.8793 .be agsociated WJthdea;ch ml'ltizalbpmn‘t. Such knl;aalc.l-
2000 0.5019 1102 0.8362 ing sequences are determined by using a symbolic
plane spanned by the forward coordinate o(s 7) and
2001 0.5058 3103 0.8871 )
the backward coordinate 3(s,). The backward co-
200 0.5079 310 0.8888 .
ordinate reads as:
201 0.5230 311 0.8923
2011 0.5254 3113 0.8941 Dy
2010 0.5201 3112 0.8949 Blsp) = Z T (5)
20 0.5333 3111 0.9019 =1
21 0.5882 3110 0.9027 where
2120 0.5914 3120 0.9098
2110 0.5960 3121 0.9105 :1)’ ?
2111 0.5992 3122 0.9176 v; = for o_jpy =
211 0.6031 3123 0.9182 1 z
210 0.6153 312 0.9206 3 3 (6)
2101 0.6196 313 0.9230 i
2100 0.6225 3133 0.9254 if > (1-0_;)=0(mod 2)
2200 0.6274 3132 (0.9260 J=1
2201 0.6303 31 0.9333
and
220 0.6349 30 0.9411
221 0.6461 3031 0.9416 0 0
2211 0.6509 3032 0.9490 e = 2 for ooiis = 1
2210 0.6536 3033 0.9494 i 2 —itl 2
2220 0.6588 303 0.9523 0 3 (7
2221 0.6614 302 0.9538 ;
2 0.6666 3023 0.9568 if S (1-0_s)=1 (mod 2)
3 0.7999 3022 0.9571 j=1
32 0.8235 3021 0.9647 . L
3233 0.8249 3020 0.9649 The knowlfedge of the pruning fronts ex%ubmed
393 0.8253 3010 0.9725 on thzfs symbolic plane a.llqws one fno determjnfz .the
390 0.8307 2011 0.9727 knt.aadmg sequences associated with each c.rltlcal
point [Fang, 1994; Fa-Geng, 1994]. Indeed, it has
3223 0.8313 3012 0.9803 . L R
been shown that the population of periodic orbits
3222 0.8326 3013 0.9805 . _
may be determined from the knowledge of the
3221 0.8392 301 0.9841 . . . e
3290 0.8404 300 0.9846 kneading sequences K; associated with the critical
| . points C; {Fa-Geng, 1994]. Then, for such a general
3210 0.8470 3003 0.9882 quartic map as displayed in Fig. 1, admissible or-
3211 0.8482 3002 0.9883 bital sequences (W) whose cyclic permutations are
3212 0.8549 3001 0.9960 W, must satisfy the conditions as follows.
3213 0.8560 3000 0.9861 Starting from the first iterate of a critical point

321 0.8571 C;, we generate a kneading sequence K; which is
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Table 2. Forward coordinates associated with
each periodic orbit following the descending

order.
(W) (W) (W) (W)
0001 0.0077 0331 0.1945
0002 0.0078 0332 0.1960
0003 0.0155 0333 0.2023
0013 0.0156 0323 0.2039
0012 0.0233 0322 0.2101
0011 0.0235 0321 0.2117
001 0.0307 032 0.2153
002 0.0317 031 0.2222
0021 0.0389 0311 0.2256
0022 0.0392 0312 0.2274
0023 0.0466 0313 0.2334
0033 0.0470 03 0.2352
0032 0.0544 13 0.2666
0931 0.0549 1312 0.2723
003 0.0615 1311 0.2745
013 0.0634 131 0.2769
0131 0.0700 132 0.2857
0132 0.0705 1321 0.2879
0133 0.0778 1322 0.2901
0123 0.0784 1323 0.2957
0122 0.0856 1333 0.2980
0121 0.0862 1332 0.3035
012 0.0923 1331 0.3058
011 0.0952 133 0.3076
o111 0.1011 123 0.3174
0112 0.1019 1231 0.3190
0113 0.1083 1232 0.3215
0103 0.1098 1233 0.3268
0102 0.1167 1223 0.3294
o1 0.1176 1222 0.3346
02 0.1333 1221 0.3372
0203 0.1400 122 0.3384
0213 0.1411 121 0.3492
0212 0.1478 1211 0.3501
0211 0.1490 12 0.3529
021 0.1538 1 0.3999
022 0.1587 2 0.6666
0221 0.1634 2223 0.6692
0222 0.1647 2233 0.6745
0223 0.1712 223 0.6769
0233 0.1725 233 0.6984
0232 0.1789 2333 0.7603
0231 0.1803 23 0.7058
023 0.1846 3 0.7999

033 0.1504

associated with a symbolic coordinate a(K;). For
the general quartic map with three critical points,
we have three kneading sequences Kj, K2 and K3
associated with three symbolic coordinates oy =
o(K1), az = a(K2) and a3 = a(K3), respectively.

Now let (W) be the orbital sequence of a period-
p orbit £. The orbit £ is actually present within
the attractor if its p cyclic permutations

Wi =G - - TpT1 . Ty

rewritten as

3
Wg = Wi Ji-1

where W} is the string of the (p — 1) first symbols
satisfy the conditions

alKy) > a(W;) if g1 =0 or g1 =1
alKy) <a(W;) if i1 =1 or o051 =2

a(Kg) > O_'(VVJ if g;01=2 or 0,1 =3
(8)

Thus, the knowledge of the three forward coor-
dinates o; allows one to completely determine the
population of unstable periodic orbits. From the
symbolic plane, knowing aq and a3, the kneading
sequences K and K3 may be obtained from Table 1
since they are determined by the so-called ascend-
ing order [Fa-Geng, 1994]. Conversely, knowing oz,
the kneading sequence Ky is given by Table 2 since
it ig determined by the descending order [Fa-Geng,

1994].

3. Topological Analysis of the
Electronic Circuit

The system is an electronic circuit whose block di-
agram is shown in Fig. 2. The circuit consists of
a nonlinear amplifier N which transforms the in-
put voltage X () into the output of(X) {Rulkov
et al., 1992]. The parameter o characterizes the
gain of N around X = 0. The nonlinear amplifier
has a linear feedback which contains a series con-
nection to a low pass filter {RC”) and to an LC res-
onance branch. It has been shown that this circuit
can exhibit a transition from periodic oscillations to
chaos via period-doubling cascades, intermittency
and crises of chaotic attractors [Volkovski & Rulkov,
1988]. In our topological analysis, we investigated
the two values of the parameter o studied in {Brown
et al, 1995]. These values (¢ = 17.4 and 18.9)
correspond to the chaotic attractors which appear
after a period-doubling cascade. FEach chaotic
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o X)

X(1) ———

i(t)

T¢ T

Fig. 2. A schematic diagram of the electronic circuit here
studied. For this circuit, data are collected at R = 3.38 &0,
L =145 mH, C =343 aF, ¢’ =225 oF, r = 347 Q, with a
sampling period of 20 zs and o = 17.4 and 18.9.

signal X (¢), measured from the capacitor C, has
been amplified, and the digitized signal X{nét} is
the first scalar time series under study. A second

signal is simultaneously recorded.
The method of time delays was used to recon-

struct phase space vectors reading as:

(X (nét), X(nbt+7),..., X(nbt + (dg — 1)7)}
(9)

In order to find the embedding delay 7 and the
embedding dimension dg, Brown et el [1995] used
the methods of average mutual information [Fraser
& Swinney, 1986] and false near neighbors [Kennel,
1992]. The results of the calculations for both values
of o indicate that the correct embedding time is
7 = 106t and the correct embedding dimension is
drg = 3.

As the embedding dimension is found to be
equal to 3, the attractor may be embedded in the
state space spanned by the (U, V, W)-coordinates
which reads as:

U = X(nét)
V=X(nét+7) (10)
W = X(nbt + 27)

The system being considered possesses symme-
try properties which are evidenced by the symme-
try of the nonlinear function, f(X) = —f(-X).
Chaos in the circuit appears as a result of a period-
doubling cascade process from a pair of mutually
symmetric limit cycles. For oo = 17.4, two attrac-
tors A~ and AT, one being symmetric of the other,
co-exist. Consequently, two period-doubling cas-
cades may be observed depending on the initial con-
ditions. A boundary crisis is hereafter observed and

a larger symmetric attractor A%, which is also called
the double scroll attractor, is found for a = 18.9.
The topological analysis will be performed for one
of the attractors of the bistable regime {o = 17.4)
and for the larger symmetric attractor {o = 18.9).

3.1. The attractor of the bistable
regime

As previously indicated, two time series are simulta-
neously recorded. Firstly, we will achieve the topo-
logical analysis of the X-induced attractor A%. The
attractor reconstructed from the second variable Z,
here called A}' will hereafter be characterized.

3.1.1.

For o = 17.4, depending on the initial conditions,
the asymptotic motion settles down on to one of
the two attractors which are symmetrical one with
respect to the other. One of those is displayed in
Fig. 3.

This attractor is studied via a Poincaré section
P defined by

P={(U V)eR}U=40,U <0} (11)

Orbit spectrum

A first-return map is hereafter built and dis-
played in Fig. 4. Three monotonic branches sepa-
rated by two critical points given by

Ci=1.65
12
{ Cy = —0.70 (12)
are exhibited.
9 - i
7t |
sk i
=
3 b 4
1 . -
-~k i
3 L 1 ! I
-3 -1 1 3 5 7 9

. il . +
Fig. 3. Plane projection of the attractor A%.
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Vn
Fig, 4. First-return map to the Poincaré section P com-

puted with the V-coordinate.

~ Periodic orbits are extracted from the Poincaré
section P and encoded following the generating par-
tition which reads as:

0 if V. >Ch
1 if Co>V,>Ch (13)
2 if Ca >V,

The corresponding population of periodic orbits is
reported in Table 3.

Such an orbit spectrum may be checked by com-
puting the symbolic plane (Fig. 5). The ascend-
ing pruning front, associated with the critical point
€, is located at oy = 0.5328 while the descending

Table 3. Population of periodic orbits em-
bedded within the attractor A" for o = 17.4.

Period (W) Period {W)
1 1 20111
i0 20101
201 20100
101 6 101110
4 1011 101111
2011 201101
2010 201110
3 10111 201010
10110 201011

20110

0.3 ; . . .
an
06 + R
04
nt My B A
" L e W - -
-ayn r - - -
02 r e 3 ou )
L
0.0 : : : : L - i
00 01 02 ©3 04 05 06 07 08

(s

Fig. 5. Symbotic plane of the attractor A%.

pruning front, associated with the critical point Co,
is located at @z = 0.0917. From these symbolic
coordinates and Tables 1 and 2, the kneading se-
quences are found to be written as

{K1=(—2_5) (14)

K> = (012)

One may check in Tables 1 and 2 that all pe-
riodic orbits extracted from the attractor A% are
found to be forced by the kneading sequence K;
following the ascending order and by the kneading
sequence K> following the descending order.

3.1.2. Template

As the first-return map is constituted by three
monotonic branches, the template synthetizing the
topology of the attractor A% exhibits three stripes.
Starting from a mask of this attractor (Fig. 6) a
stripe, labeled 0, is found without any local torsion
and is to be associated with the increasing branch 0.

[ ] stripe 0

stripe 1
upper face

lower face

Fig. 6. Mask of the attractor A%.
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Fig. 7. ‘Tempiate of the atiractor A™T.

A second stripe, labeled 1, which undergoes a neg-
ative w-twist, corresponds to branch I. The third
stripe, labeled 2, presents two negative w-twists and
is associated with the increasing branch. From this
mask, the template is extracted and found to be

gL 1
s L 5
5r 4
>
3k 4
I 1
-1 = i
i , : . L
-3 -1 i 3 5 7 9
X
(a)

defined by a linking matrix which reads as:

0 -1 -1
M={-1 -1 -2 (15)
-1 -2 =2

where the on-diagonal elements M;; give the num-
ber of r-twists on the ith stripe and the oft-diagonal
elements M; give the sum of the oriented crossings
between the ith stripe and the jth stripe. The tem-
plate is displayed in Fig. 7.

This template may be checked by counting the
linking numbers on the plane projections of a few
couples of periodic orbits. The couples (201,1) and
(2010,201} are displayed in Fig. 8. The linking
numbers L(201, 1) and L{2010, 201) are found to
be equal to ~1 and ~5, respectively. These link-
ing numbers are equal to the ones predicted by the
template. The template is therefore validated.

Attractor induced by the
second time series

3.1.3.

The second time series is recorded as indicated in
Fig. 2. From the principle of the redundancy of
information within a nonlinear dynamical system,
each variable is equivalent, i.e. all attractors recon-
structed from each variable are equivalent. Never-
theless, we have shown that there exist some patho-
logical cases where this principle is not valid when
the embedding dimension is equal to the dimension
of the original phase space [Letellier & Gouesbet,

; - : e
oL ;
7 b -
5k ]
P

3k |
I r - i
b TRReraaee ---- 200 A

— (2010)

3 . . . . . .

-3 -1 1 3 5 7 9

X
(b}

Fig. 8. Plane projection of two couples of periodic orbits. {a) L(201,1) = (-3 + 1] = —1. (b) L{2010,201) = ;[-10} = —5.
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30 T

0~

Z(t+71)

20 -10 0 10 20 30
1)

Fig. 9. Attractor A} reconstructed from the second time
series. T = 9.

1996]. As stated by Takens [1981], an embedding
dimension which gives a diffeomorphical equiva-
lence must be fixed to be equal to at least 205 4+ 1
where Dy is the correlation dimension estimated
by algorithms as the one proposed by Grassberger
and Proccacia [1983]. Nevertheless, such a con-
dition is rather severe and would prevent the use
of topological characterization which is restricted
to 3-spaces. Moreover, King and Stewart [King
& Stewart, 1992] have shown that the Takens’
theorem must be extended to preserve symmetry
properties.

Consequently, it may not be surprising that
two attractors reconstructed from two different vari-
ables of a single system may be found to be different
when the embedding dimension ig taken to be equal
to the dimension of the original phase space. The
case of our experimental electronic circuit seems to
correspond to such a pathological case. Indeed, the
Z-indueed attractor is displayed in Fig. 9 and looks
rather different than the one induced by the X-time
series,

The time delay 7 is taken to be equal to 96t
This value has been fixed to a smaller value than
the one used with the first time series to obtain a
hole in the middle of the attractor. Such a hole
is of crucial importance to safely define a Poincaré
section. With this time delay, the Poincaré section

P is defined by

P={(Z(), Z(t+27) € R*|Z(t + 1) = 12.3,
Z(t) < 4.0, Z(t+7) > 0} (16)

=13

N; 3k f A ‘.i
i |
\ 1.
2t |} -E
]
C, |
7 L i 1 I

7 2 -3 -8 -13

zﬂ

Fig.10. First-return map to the Poincaré section P. [t looks

rather similar to the one associated with the X-induced at-

tractor AY.

0.8 -
| ;
| n :
F - ]

‘ mal i

0.6 - 5
I
|
|

o 04 [‘— -
! nil e B H ;
T w dw [ - “
L - LR | - E } :
02 i[ [ - | J.
|
’ T
. [
0.0 . . : . e s !
0.0 0.1 0.2 {3 0.4 0.5 G.6 0.7 0.8

Fig. 11. Symbolic plane of the Z-induced attractor.

The first return map to this Poincaré section
is computed with the Z(¢) variable and displayed
in Fig. 10. As for the X-induced attractor, the
first-return map exhibits three monotonic branches
separated by two critical points given by:

{Cl = —3.212 ()
Cy = —101.380

The symbolic plane is hereafter computed
(Fig. 11). The kneading forward coordinates are

found to be:

(18)

ayp = 0.5328
a9 = 0.33
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35 r b
15 r 4
o~
l.a
+
Sy
T st
-5 i
!
|
b
=15 . L
~1i5 -5 5 i5 25
47
(a)
Fig. 12. Plane projection of two couples of periodic orbits

1[-8+4] = —2. (b) L(2011,201) = }[5 — 13] = —4.

30 |

1)

50 S , e .
-3C -1.0 1.0 3.0 5.0 7.0 9.0
X()

Fig. 13. Plane projection of the attractor reconstructed from
the two time series X (1) and Z{t).

From Table 1 and Table 2, they are found to be
associated with kneading sequences which may be

written as: .
{Kl = (20)

Ky = (0021) (1)

respectively. The kneading sequence K, associated
with the ascending order, is the same for the two
different attractors. Nevertheless, the kneading se-
quence Ko, associated with the descending order,
implies that the second critical point Cy of the Z-
induced attractor allows more orbits than the sec-
ond critical point of the X-induced attractor. It is

25 r R
15 - E
LY
E—i
+ ;
= i
w3 1
5t ]
l_— - 210)
(2010)
-15 r : : :
-15 -5 5 15 23
zf)
(b)

embedded within the Z-induced attractor AF. (a) L(201,10) =

not impossible that such a difference may be gener-
ated by the time delay change {such a dependence
could be completely studied in future works).

The Z-induced attractor looks rather compli-
cated and we have to check if its topology is
compatible with the template of the X-induced at-
tractor. In order to check the topological equiva-
lence between the attractors A} whose template is
defined by the linking matrix (15) and A}', we eval-
uate the linking numbers between a few couples of
orbits. We found that

L(2010,1) = -2
L(2011,1) = -2
L(201,10) = -2 (20)

L(2011, 201) = —4
L{2010, 201) = ~4

Two plane projections associated with two of
the linking numbers are displayed in Fig. 12. All of
these linking numbers are correctly predicted by a
linking matrix which reads as:

0 -1 -1
My,=|-1 -1 -2 (21)
-1 -2 0

Consequently, there is no topological equiva-
lence between the X-induced attractor A"}z— and the
Z-induced attractor A7. Indeed, the third stripe of
A} presents no local torsion while the third stripe
of At undergoes two negative w-twists. Such a
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case of lack of equivalence has been observed on the
Burke’n Shaw system [Letellier et al. 1996]. Once
again, the principle of the equivalence between two
variables of a single system is not checked.
Moreover, Mindlin and Selari [1995] have shown
that an embedding may depend on the used time
delay.

Nevertheless, it seems that we could define the
topology of the true dynamics underlying the elec-
tronic circuit. We know that the embedding di-
mension is equal to 3. Three independent variables
are therefore required to span a reconstructed phase
space. We already have two scalar time series which
may be viewed as having been obtained from two
variables of the reconstructed phase space. In order
to obtain a third variable, we may use X (¢ +7) or
Z(t + 7). In this section, we will denote this third
variable by w(¥).

A X Z-plane projection of the attractor recon-
structed from the two time series is displayed in
Fig. 13. The attractor looks rather similar to the
X-induced attractor.

A Poincaré section is defined by

Pyz = {(X(t), w(t)) € RBX =5.0, X <0} (22)

A first-return map to this Poincaré section is

computed and displayed in Fig. 14. Three mono-
tonic branches are found to be separated by two

critical points given by:

C; =0.32
23
{Cg = —4.64 (23)
15 .
CI
= M"‘ :
o‘.‘l' i ‘\.\'l-

50 b
L CZ

7.5 : - ; :
75 5.0 25 0.0 25 50 IS

Fig. 14. First-return map to the Poincaré section Pxz.

The symbolic plane is computed and the knead-
ing forward coordinates are found to be equal to

oy = 0.5333
(24)
Qo = 0.0328
with the associated kneading sequences
K; =20
1= 20 (25)
Ky =1(002)

Once again, the kneading sequence K agrees
with the one found on the X-induced attractor
while the second kneading sequence K3 is found to
be different. By computing linking numbers, we
found that the topology of this attractor is charac-
terized by a linking matrix which reads as:

0 0 0
Mxz=|0 +1 +1 (26)
N0 1 42

This linking matrix seems very different from the
linking matrix of Eq. (15). Nevertheless, as ex-
pected when taking into account symmetry prop-
erties, all local torsions designated by the diago-
nal elements are found with an inverse sign when
compared to Eq. (15). The off-diagonal elements
however are found to be different due to the use
of the standard insertion convention [Melvin &
Tufillaro, 1991], i.e. it is not actually significant. Let
us further comment on the issue. We have used a
space spanned by the coordinates (X, Z, w). Let us
consider that this triplet of variables defines a right-
handed system. We have no deep physical reason
to choose such a system, and we could use the space
spanned by (X, w, Z} as well. For instance, if we
consider the Rossler system described by the three
variables (z, v, z), the dynamics is preserved under
the map ®: (z, v, 2) — {z, ¥, ©). Nevertheless, if
the original space is considered as right-handed, the
new space spanned by (z, y, ) is not. The imme-
diate consequence is that all oriented crossings are
mapped to their opposite (Fig. 15). The attractor
reconstructed in the new space spanned by (z, ¥, Z)
is then characterized by an opposite template al-
though the dynamical behavior is the same as on the
original attractor, Similarly, we are not allowed to
say that the dynamical behavior of the X Z-induced
attractor is different from the X-induced attractor.
Indeed, the difference between Eqs. {15) and (26)
is due to the fact that all oriented crossings for the
present attractor are inversed with respect to those
of the X-induced attractor.
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Right-handed space

Fig. 15.

Therefore the topology of the true dynamics is
likely to be the one of the X-induced attractor in
so far as it is more robust than the topology of the
Z-induced attractor. The Z-time series could there-
fore be pathological.

3.2, The larger symmetric attractor

3.2.1. The symmetry of the altractor

After a boundary crisis, the asymptotic motion set-
tles down to a larger symmetric attractor which is
displayed in Fig. 16 for o = 18.9. The topolog-
ical analysis of such an attractor with symmetry
properties requires a specific procedure [Letellier
et al. 1994] [Letellier & Gouesbet, 1996]. Indeed,
when a system is equivariant, a pertinent dynamical

Plane projection of the symmetric attractor.

Fig. 16.

Left-handed space

An oriented crossing in a right-handed system is mapped to its opposite crossing in a left-handed system.

information may be obtained by working in a fun-
damental domain D. Then, as a first step to the
analysis, we have to define the nature of the sym-
metry properties of the attractor. Let us recall that
the attractor is embedded in a space spanned by
the delay coordinates from the equivariant variable
z(t).

As the attractor possesses symmetry proper-
ties, the vector field generating this attractor is
equivariant, i.e.

flyz) = vf(z)

where v is the matrix defining the equivariance. An
equivariant variable is here mapped to its opposite
under the action of the y-matrix. An invariant vari-
able is invariant under the action of the y-matrix.
The symmetry properties of a reconstructed attrac-
tor depend crucially on the nature of the variable
used to build a set of coordinates which may be
indifferently taken as delay coordinates, derivative
coordinates or principal components [Gibson et al.,
1992]. If a phase space is reconstructed from an in-
variant variable, the induced attractor possesses no
symmetry properties. Conversely, if an equivariant
variable is used, each coordinate derived from it is
equivariant too. Consequently, all coordinates are
equivariant and the y-matrix of the reconstructed
attractor reads as:

1 0 0
y=| 0 -1 0 (27)
0o o0 -1

defining an inversion symmetry.
It has been shown that in the presence of an

inversion symmetry, the topological characteriza-
tion may be conveniently achieved by working with
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unsigned fundamental linking numbers [Letellier &
Gouesbet, 1996]. Let us recall this specific pro-
cedure starting from the z-variable of the Lorenz

systemn.

3.2.2. Topolegical analysis in presence

of the inversion symmetry

The Lorenz system reads as:

& =o(y ~ )
p=Rr—y—zz (28)
f=-bz+zy

in which we use a control parameter vector (R, o,
B) = (28,10, 8/3) for which the asymptotic mo-
tion settles down on to a strange chaotic attractor
{Lorenz, 1963]. The vector field f is equivariant
with an equivariant matrix which reads as:

-1 g 0
vr, = 0 -1 0 {29)
0 o 1

defining an axial symmetry.
The original attractor is characterized by a fun-

damental template whose linking matrix reads as:

. {0 0
AJL——(O +1) (30)

and is associated with the fundamental domain,
i.e. a wing of the attractor [Letellier et al. 1994].
In the presence of a symumetry, the dynamics
must be projected on a fundamental domain to ob-
tain a convenient analysis. Thus, the dynamical
behavior must be analyzed by using a Poincaré set
rather than a Poincaré section. In the case of the
attractor induced by the x variable, we use a state
space spanned by derivative coordinates according

to:

X=z
V==z (31)
Z=zI

Let us recall that it has been shown that the delay
coordinates are equivalent to the derivative coordi-
nates [Gibson et al. 1992]. The Poincaré set Px is
defined as the union of two Poincaré sections Px,

and Py_ defined as follows:

Px, = {(X,Y) e RIX = Xr, X <0} (32)

iY1=78

100

— e b

iYMHI

50

1) 50 160 150
id

Fig. 17. First-return map to the Poincaré set Px computed
with the invariant variable [Y].

and
Py ={(X,Y)eRYIX = —Xr, X >0} (33)

where Xp = /b(R—1). In other words, the
Poincaré set is constituted by the union of the
Poincaré section Px+ computed in the fundamen-
tal domain 7 and of the Poincaré section Py-,
symmetrical with respect to Px+, computed in the
copy ¥D of the fundamental domain, i.e. we have a
Poincaré section in each wing.

The first-return map (Fig. 17) is computed with
an invariant variable which may be taken as the
absolute value of the ¥-coordinate. This invariant
variable mods out the eguivariant nature of the ¥-
variable and consequently projects the dynamics on
the fundamental domain D.

A map similar to the Lorenz map [Lorenz, 1963]
is then obtained exhibiting a critical point which is
located at Y. = 78. As on the original attractor, the
increasing branch, labeled 0, is associated with the
evolution of the trajectory in the same wing and
the decreasing branch, labeled 1, with the transi-
tion from one wing to the other. The deep differ-
ence with the original attractor is that local torsions
of band 1 are opposite, +7 on P and —7 on ¥yD
[Fig. 19(a)].

In [Letellier et al., 1994], we presented the topo-
logical procedure to characterize an attractor in the
case where the symmetry preserves the rotation
sign but this condition is not met in the case

‘of an inversion symmetry [Letellier & Gouesbet,
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rotation sign (Fig. 18). This property will have deep
consequences on the fundamental linking numbers
L(N;, N;) as described below.
.. . From the mask of A, [Fig. 19(a)], we extract
-7 + 1T the mask associated with the fundamental domain
A D and its copy D, respectively Fig. 19(b}).
Let us insist on the fact that Fig. 19(b) presents
both D and D, ie. it exhibits two fundamental
domains in so far as either P or 4D could be cho-
sen as the fundamental domain, this choice being
Fig. 18. Rotation sign is reversed under an inversion arbitrary. Two fundamental templates are then
symmetry. proposed [Fig. 19(c)]. One may remark that the

/— Inversion symmetry \ 1996]. Actually an inversion symmetry reverses the

Inversion symmetry

(a) {b)

Inversion symmetry

Nor standard insertion Standard insertion

(c)

Fig. 19. Extraction of the template from the mask of the z-induced template. (a) Equivariant mask of %Az the fundamental
domain T and it5 copy D are bounded hy the dashed line. The Poincaré sections Px are also displayed. {b) Schematic view
of the masks associated with D and vD of Az. {c) Templates of the fundamental domain D and of its copy +D.
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fundamental template associated with the funda-
mental domain D presents a band 1 with a positive
w-twist while the template associated with its copy
~+D has a band 1 with a negative w-twist: this is
a consequence of the inversion symmetry which re-
verses the rotation sign in contrast with the previ-
ously discussed case of axial symmetry. Then, using
the standard insertion convention, the templates are
described by the linking madtrices

0 0 g -1
Mp = (0 +1) and Mp= (—I _1) ,
(34)

respectively. One may remark that the template of
the fundamental domain is the same as for the fun-
damental domain of the original attractor. Conse-
quently, if we mod out the symmetry, the template
of the reconstructed attractor induced by the z-time
series is the same as for the original Lorenz sys-
tem. So the two different dynamical systems have a
fundamental domain exhibiting the same structure
{horseshoe dynamics).

As both fundamental templates topologically
characterize the attractor (in the restricted sense),
we cannot unambiguously determine the sign of the
local torsion of band 1. Indeed, the choice of the
fundamental domain D is arbitrary (the right wing
could be also chosen as the fundamental domain).
Therefore, the sign of the fundamental linking num-
ber L{N;, N;) is arbitrary too. For these reasons,
we prefer to introduce an unsigned fundamental
linking number £{V;, N;). Let us note that the
introduction of unsigned fundamental Enking num-
bers is deeply related to the fact that restricted
topological equivalence is not topological equiva-
lence stricto sensu. Indeed, topological equivalence
stricto sensu requires the use of signed linking num-
bers {Letellier & Gouesbet, 1996].

We now emphasize the usefulness of working
with such a fundamental domain (at least in the
present case of inversion symmetry). Due to the in-
version symimetry which reverses the rotation sign,
a signed crossing on a wing of A; is opposite to its
corresponding crossing (under the action of v) on
the other wing. Thus linking numbers L(N;, N;)
between two symmetric orbits are always equal to
0. Then topological equivalence stricto sensu does
not sufficiently discriminate the different dynam-
ics associated with symmetrical orbits. Topological
characterization should therefore preferably be per-
formed by considering a fundamental domain and a
fundamental linking number.

Thus, as signed crossings are reversed under the
action of -y, we have to work independently on the
fundamental domain D (left wing) and on its copy
+D (right wing). The fundamental domain and its
copy are easily generated on an XY-plane projec-
tion by drawing a dashed line defined by X = 0
[Fig. 19(a)]. One may check on Fig. 19(a) that an
oriented crossing in D is mapped to an opposite
crossing in 4D under the action of the y-matrix.
Signed crossings are then counted independently on
D and 4P and the unsigned fundamental linking

number £(N;, N;) is given by:

> elm)

1

ZE(pz)” (35)

1
2

2|2

LN, Nj) = - F

in which p; designates a crossing between V; and
Nj on the fundamental domain D and py a crossing
between N; and NV; on its copy ¥P. Such an un-
signed fundamental linking number allows the pro-
vision of an invariant integer which is predicted by
the fundamental template modulo the sign. It acts
in a way similar to the fundamental linking number
introduced in Sec. 3.2.2.

Indeed, due to the equivariance properties, to
each oriented crossing between an orbit N; and an
orbit N; on the fundamental domain is associated
an oriented crossing on its copy but, as the inver-
sion symmetry reverses the rotation sign, a positive
(nesative) crossing in D is found negative (positive)
on vD. On the z-induced attractor, all the positive
(negative) crossings counted on D are counted as
negative {positive} on 7vD. If one only takes into
account the oriented crossings on D, the half-sum
of these is found to be equal to the linking number
predicted by the fundamental domain. Conversely,
when the copy 7D is considered, the half-sum is
found to be the opposite of the linking number pre-
dicted by the fundamental template. Nevertheless,
the relative organization of the periodic orbits is
found to be the same on D and D if we mod out
the rotation sign as required in the presence of an
inversion symmetry.

For instance, let us determine the funda-
mental linking number between two couples of
periodic orbits encoded by (101,10) and (100,1},
respectively. The unsigned fundamental linking
number £(101, 10) is then found to be equal to 2
(Fig. 20) which is therefore equal (within the value
of the sign) to the fundamental linking number
£{101, 10) obtained on the original Lorenz atirac-
tor {Letellier & Gouesbet, 1996]. The unsigned
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{a)

Fig. 20.
(b) Blow up.

80

30 =

Fig. 21. Plane projection of the orbit pair {(100,1):
£(00, 1) =l+2/+|-2)=1

fundamental linking number is then also in agree-
ment with the template construction. Similarly, the
unsigned fundamental linking number £(100, 1) is
found to be equal to 1 (Fig. 21) and may be easily
checked by a construction on the original template.

Topological properties are here checked in the
weak sense {restricted topological equivalence); in
particular, information about the rotation sign re-
mains unavailable.

3.2.3. Topological analysis of the

symmetric atiractor

We have seen in Sec. 3.2.2. that the dynamical
behavior of an equivariant system is conveniently

Plane projection of the orbit pair (101,10): £(101,10) = (| + 4| +| - 4}) = 2.

300 |

10.0

(b)

{a) Orbit couple (101,10).

analyzed by working in a fundamental domain, re-
quiring the use of a Poincaré set instead of a
Poincaré section. In the case of the symmetric at-
tractor generated by the electronic circuit, such a
Poincaré set Pge is defined as the union of two
Poincaré sections Py, and Px_ which are defined

by
Py, ={(V,W)eRIU = 4.0, U <0}  (36)
and
Py ={(V,W)eR}U =—-4.0,U >0} (37)

The first-return map is then computed with an
invariant variable taken as

- 14 if U=40
V=
{_V

if U=-440
The first-return map is displayed in Fig. 22.

One may then remark that a small departure
from the symmetry is exhibited by the first-return
map since the points associated with the fundamen-
tal domain D define a curve which is slightly differ-
ent from the one constituted by the points associ-
ated with the copy D of the fundamental domain.
This slight difference may come from a small resid-
ual defect in the experimental set-up. Indeed, the
nonlinearity in real circuit cannot be made perfectly
symmetric.

Nevertheless, in order to perform a pertinent
topological analysis, we had better eliminate this
departure from symmetry. This may be achieved

(38)
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Fig.22. First-return map to the Poincaré set Pgc computed
with the invariant variable V.

Fig. 23. First-return map to the Poincaré set computed with
the new definition of the invariant variable V.

rather weil by redefining the invariant variable V as

- 14 i U=40
-V +0.18

if U=-4.0
The first-return map computed with this new
definition of the invariant variable is displayed in
Fig. 23. It now approximates well enough a one-
dimensional map and exhibits five monotonic
branches separated by four critical points which read

as:

(39)

Cy =170
Cy = -0.66

440
(g = —1.08 (40)

C4 = —1.23

Despite the fact that for our purposes this ap-
proximation is valid, one has to understand that the
use of this approximation is limited. Indeed, it has
been shown in previous studies of the circuit that
the symmetric chaotic attractor is associated with
the bifurcations of homoclinic orbits. These homo-
clinic orbits are formed by the one-dimensional un-
stable manifold of the saddle-focus located in the
origin of the phase space. For the parameters of
the circuit which correspond to the regime of sym-
metric chaotic oscillations, this saddle-focus is char-
acterized by positive saddle-focus value X5 = Ap +
Rels 3, where Ay and Ag3 are real and complex-
conjugate eigenvalues of the saddle-focus. The
dynamics of the systems with a homoclinic orbit
originated from a saddle-focus was theoretically
studied in a series of papers [Shilnikov, 1970;
Belyakov, 1984]. The results of this theory indi-
cate that the flow of the trajectories which passes
through the vicinity of the saddle-focus has a
twisted structure. In the case of positive saddle-
focus value, this twisted structure will provide mul-
tiple folding of the shape of the first-return map.
These foldings asymptotically merge to the point
which is the image of the one-dimensional manifold
of the saddle-focus [Glendining & Sparrow, 1991).
Therefore, the first-return map computed from the
data contains multiple foldings in a parrow region
located between the points Cy and Cs. The influ-
ence of this region on the topology of the symmetric
attractor can be very important. However, the noise
in the experimental setup and the lmitations of
using a one-dimensional approximation of the map
do not allow us to describe this region in detail.
Therefore, the use of the approximated map which
contains a small number of the foldings is valid only
for the trajectories which are out of this narrow
region.

The population of periodic orbits is now ex-
tracted from the Poincaré set Prc and encoded by
using:
if irn <)
if 1< ﬁ—n < Yy
if Cy < Vi< Cs
if C3< ?’n < (4

if Oy <V,

(41)

The orbit spectrum is reported in Table 4. Asis
casily viewed on the first-return map (Fig. 23), no
period-1 orbit is found within the attractor since
the map does not cross the bissectrix line.
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Table 4. Population of periodic orbits em-
bedded within the symmetric attractor for

c = 18.9.
Period (W) Period (W)
2 10 414040
20 413041
30 412041
40 412040
41 412030
4 2120 412020
3020 412010
4140 412011
4130 411011
4121 411010
4120 411020
6 201020 411030
201011 411040
414041

Asg for any symmetric system, there exist two
kinds of periodic orbits. The first kind is consti-
tuted by asymmetric orbits which appear by pairs
[Fig. 24(a)]. The second kind is constituted by sym-
metric orbits which deseribe twice their symbolic
sequence before returning to their initial conditions
Fig. 24(b)].

A mask is now exiracted from the attractor dis-
played in Fig. 16. Nevertheless, due to the number
of stripes and the structure of the attractor, a clear

-5 1

-1 : : :
-10 =5 0 5 10
X
(a)

Fig. 24. The two kinds of periodic orbits.

sketch of this mask cannot be conveniently given in
this paper. The fundamental template which syn-
thetizes the topology of the fundamental domain D
is given in Fig. 25. Its linking matrix reads as:

0o 0 0 0
+1 #1411
+1 42 41 +2 (42)
+1 +1 +3 +2
+1 42 42 42

M'DE

[om g e S e Y e B s

This linking matrix is given for the fundamental
domain D which is taken as indicated in Fig. 16.

But let us recall that an inversion symimetry re-
verses the signs of rotation. Consequently, the fun-
damental template associated with the copy of the
fundamental domain is defined by a linking matrix
which reads as:

0 -1 -1 -1 ~I
-1 -1 -2 -2 -2
Mp=|-1 -2 -2 -2 -3 (43)
-1 -2 -2 -3 -3
-1 -2 -3 -3 =2

Due to the standard insertion convention [Melvin &
Tufillaro, 1991], this linking matrix is not the oppo-
site of Mp. Nevertheless, the fundamental template
which is associated with the copy of the fundamen-
tal domain is able to predict fundamental hnking
numbers counted on 1. Furthermore, by working

5F

(a) Pair of asymmetric orbits encoded by (10). (b) Symmetric orbit encoded by {30).
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Fig. 25. Template of the fundamental domain of the sym-

metric atiractor.

with unsigned linking numbers, the two linking ma-
trices may be simultaneously checked with plane
projections of orbit couples. For instance, the un-
signed fundamental linking numbers £(40, 30} and

| £(30, 10) are found to be equal to 2 from the

10 T
~
~
5 -
=~ oFf .
P
-5t i
--- (30)
e (40) N
s
T -5 .0 5 10
X
(2)
Fig. 26. Plane projections of two couples of periodic orbits.

L+ + 3 -4 =2

template in agreement with the plane projections
(Fig. 26).

The reader may check that the linking matrix
Myp is consistent with the linking matrix Mg
of the attractor AT, i.e. the third first lines and
columns are identical to the associated lines and

columns of Ms.

4. The Models

4.1. Chua’s etrcuit

The main objective of this section is to construct
templates for two members of a family of chaotic
attractors called Chua's attractors: the spiral type
and the double scroll attractors, which have been
the ohject of a couple of recent papers by Kocarev
et al. [1994a, 1994b]. The motivation for study-
ing Chua’s circuit is that it is a model of an elec-
tronic circuit whose attractors look rather similar to
the ones observed on the electronic circuit described
in the previous sections. By using the topological
characterization, we would like to determine if an
equivalence exists between the previously discussed
experimental circuit and the simple autonomous
physical system proposed by Chua [1992].

4.1.1. The system

Chua’s gystem to model the dynamics of Chua’s
circuit is constituted by a set of three ordinary

e 1)}
— (3 ~

X
(b)

(a) £{40,30) = 1(H}+5 - 1]+ 3| ~5+1]) = 2. (b) £(30,10} =
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differential equations which read as:

i =aly— - hz)]
v=x—y+=z
z =y

where

h(z) = myz + (—m-"—%m—l) lz+1—iz—1] (45)

The control parameters of the system are fixed
as § = 100/7, mg = —8/7, my = —5/7, while
ig a variable control parameter. The vector field
defined by these equations is equivariant under a
matrix which reads as

-1 0 0
Ye=1] 0 =1 (46)
00 -1

This matrix defines an inversion symmetry. If
845 < a < a, = 8.80642, there exist two symmet-
rical attractors each with its own basin of attrac-
tion. For «,, a boundary crisis occurs and a larger
symmetric attractor, resulting from the merging of
the two attractors A~ and A7, is created. This
evolution is similar to the one observed on the ex-
perimental circuit and on the model studied in the
previous section.

In order to gain a precise comparison between
Chua’s model and the behavier of the experimental
electronic circuit, we will use the topological char-
acterization. Actually, a description of the topol-
ogy of this model has already been performed by
Kocarev et al. [1994a, 1994b] without, however,
taking into account the equivariance of the vector
field defined by Eq. (44). Here, in contrast, we will
give a topological analysis of the system for @ = 8.8
and a = 9.0, generating attractors which look simi-
lar to the ones of the experimental circuit and which
account for the equivariance properties.

4.1.2.  The pair of simple attractors

For o = 8.8, the asymptotic motion settles down
on to ore of two chaotic attractors depending on
the initial conditions. One of these two attractors

is displayed in Fig. 27.

0.40 7

0.20 -

= 000 |

~0.40 — - :
=035 0.25 1.25 2.25

X

Fig. 27. One of the two attractors which are symmetrical
one with respect to the other.
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Vi
Fig. 28. First-return map to the Poincaré section P..

This attractor is studied via the Poincaré
section P, defined as:

P.={(z, z) € R*|y = —0.05, y > 0} (47)

From this Poincaré section, a first-return map is
computed with the z-coordinate (Fig. 28). Three
monotonic branches are exhibited and separated by
two critical points which read as:

{qm&mz

Cy = —0.288 (48)

Periodic orbits are extracted and encoded by
using:

0 if Cy <y,
1 if Co<yn<Cy (49}
2 if Yo < Ca.
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Table 5. Population of periodic orbits embedded
within the simple attractor for o = 8.8,

sequence sequence sequence sequence
1 1011 10100 20000
10 1001 10111 20001
101 1000 10110 20011
100 2000 10001 20010
200 2001 10000

The orbit spectrum is reported in Table 5.
The symbolic plane is computed and the knead-
ing forward coordinates associated with the critical

points €1 and C, are

{m = 0.5079

50
ap = 0.0020 (50)

respectively. The associated kneading sequences are

written as .
Ky = (200
1= (200) (51)
Ko = (0001).

All periodic orbits extracted from the attractors
are allowed by the kneading sequences except the
period-3 orbit encod by (201) which is created by
a saddle-node bifurcation, implying also the orbit
(200). This orbit is already well approximated by
a part of the chaotic trajectory altbough it is not

really created.
By computing linking numbers between a few

couples of low period orbits, we found that linking

0.4

02~

~0.4 :
-1.0 0.0 1.0 L0 3.0

Fig. 29. Plane projection of periodic orbits encoded by (201)
and (1). The linking number L(201, 1) is equal to }(~2) =
—1 as on the experimental circuit (see Fig. 8).

numbers are well predicted by the template defined
by the lnking matrix (15} without any discrepancy.
See for instance the plane projection of orbits en-
coded by (201) and (1) displayed in Fig. 29.

The attractor generated by Chua’s circuit is
therefore topologically equivalent to the one gen-
erated by the experimental electronic circuit. The
orbit spectra are however different. They could
be adjusted by acting on the control parameters o

and 3.

4.1.3. The double scroll attractor

For @ = 9.0, after the boundary crisis, the asymp-
totic motion settles down on to a double scroll at-
tractor which is displayed in Fig. 30.

Fig. 38. The double scroll attractor for o = 9.0.

CI
035 b
C3
0.25 1 ]
;:é
0.15 | -
CZ‘
0'05 1 b I
0.05 0.15 0.25 0.35
T
Fig. 31. TFirst-return map to the Poincaré set Pg built on

the {y| invariant coerdinate.
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This attractor is studied via a Poincaré set Pg
defined as the union of two Poincaré sections read-
ing as:

Pos = {(y, z) € R*lz =125, & < 0} (52)
and
Ps. ={(y, z) € R*lz =~1.25,& > 0}.  (53)

A first-return map is computed by using the
absolute value of the y-coordinate to obtain an in-
variant variable as required to perform the topo-
logical analysis in the fundamental domain D. The
map, displayed in Fig. 31, exhibits four monotonic
branches separated by three critical points accord-
ing to

Cy = 0.276
Cy =0.333 (54)
Cy =0.342.

The population of periodic orbits is extracted
and encoded by using:

0 if |yn[ < C

1 i G <lyn] < Co _
. (55)

2 if Cax Iyn| <y

3 i Oy< Iyn|.

The orbit spectrum is reported in Table 6. As ex-
pected on a symmetric atiractor, two kinds of peri-
odic orbits are again found.

Once more, linking numbers counted on plane
projections of orbit couples are found to be equal
to the ones predicted by the template defined by
the linking matrix (42). The double scroll attractor
of the Chua's circuit is therefore topologically com-
patible with the one observed on the experimental

Table 6. Population of periodic orbits embedded
within the double scroll attractor for e = 9.0

sequence sequence sequence sequence

10 4140 414040 412011

20 4130 413041 411011

30 4121 412041 411010

40 4120 412040 411020

41 201020 412030 411030

2120 201011 412020 £11040
3020 414041 412010

10

=== (10}
— {39}

0 5 10

Fig. 32. Plane projection of periodic orbits encoded by (30)
and (10). The linking number L(30, 10) is equal to E+
4 + 5 -4 =2

circuit. A plane projection of orbits encoded by (30)
and (10) is given as an example (Fig. 32).

4.2. The second model

Let us consider a model which describes the dynam-
ics of this experimental circuit [Volkovski & Rulkov,
1988]. The model is constituted by a three variable
system of differential equations which reads as:

L=y
= —x—0y+z (56)
t=v[aF(z) -z -0y

where z is the voltage across the capacitor C' and
y = +/L/C" i(t) with i(¢) the current through the
inductor L. Also, z is the voltage across the capac-
itor ¢’. Time has been scaled as r = tv/LC’. The
parameters of this system have the following depen-
dence on the physical values of the circuit elements:

vI»IC C C
1= Y S=nlf. o=z D)

where the values of control parameters correspond
to the experimental values of the circuit studied in
Sec. 3. The nounlinearity F{z) can be approximated
by

0.528 for z < —-1.2
Flz)={ z(1—2%) for -12<z<~12 (58)
—0.528 for 1.2 <zx.
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The model has the nice feature of being linear in
the neighborhood of the origin. The development
of the trajectory is bounded when x exceeds thresh-
old. The trajectories are then reinjected at the up-
per level while maintaining symmetry. The vector
field so defined is equivariant with an equivariance
matrix reading as:

-1 0 0
~=| 0 -1 0 (59)
0 0 -1

which again defines an inversion symmetry. De-
pending on the values of the control parameters,
the behavior of the circuit settles down to a single
symmetric attractor or to an asymmetric pair of
attractors (one or the other attractor in the pair is
reached depending on the initial conditions). Pro-
jections of these attractors are given in Figs. 33 and
34. The behavior of this model is therefore similar
to that of Chua's circuit.

We will study the symmetric attractor for o =
15.8 (note that an exact corresporndence between
the experimental and the model o-values does not
exist). The attractor is symmetric and conse-
quently must be characterized with the procedure
required for systems with equivariance properties.
A Poincaré set Pp is defined as the union of two
Poincaré sections Pp+ and Pp- which read as:

Pp+ = {(ly), |z) e R}|z =08, 2 <0}  (60)

and

Pp- = {{jy], |=}) € B}z =08, >0}  (61)

LG

05 -

0.0

~035 -

One of the pair of attractors for & = 13.5,

where the absolute values of 4 and 2 are required to
work with invariant variables which project the dy-
namics on the fundamental domain. A first-return
map is built with an invariant variable given by

Wy == |y cOS @ + |2 | sin g (62)
where ¢ = m/6 allowing the reduction of the lay-
ered structure which is present on the first-return
maps built with |y,| or [2z,]. The first-return map
so obtained is displayed in Fig. 35.

Four branches are essentially exhibited on the
first-return map. In fact, there also exist two critical
points between C3 and Cjy, but the corresponding
branches are not sufficiently developed to be safely

- 0 - i
i
i
; |
4 i
|
2t :
-2 -1 0 1 2
X
Fig. 34. The symmetric attractor for e = 15.8.

First-return map to the Poincaré set Pp built with

Fig. 35.

the mvariant variable w,.
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taken into account in the symbolic dynamics of low
periedic orbits. Consequently, only three critical
points are taken into account as

Cy =1.36
Cy =1.51 (63)
Cy=1.60.

One may remark that the first increasing branch
encoded by 0 is not present on this attractor,
1.e. stripe 0 is not visited by the asymptotic chaotic
trajectory. The population of periodic orbits is ex-
tracted from the attractor and encoded by using:

if Wy, < Cy
it Cy <wn<Cs
if O3 <w, < Cy
if Cq < wn.

K(wy,) = {(64)

= LI b

The model has now to be validated by using the
topological analysis. This is achieved by comparing
the topology of the attractor obtained by integrat-
ing the model and the attractor induced by the ex-
perimental data. We have {o check if the unsigned
linking numbers counted on plane projections of
orbit pairs are in agreement with the template pre-
diction. For instance, the unsigned fundamental
Hnking number £(21, 1) is found to be equal to 1 on
the plane projection displayed in Fig. 36 and conse-
quently is equal to the one predicted by the linking
matrices Mp or Myp.

13

Fig. 36. Plane projection of orbits encoded by (21) and
(1) extracted from the symmetric attractor. The unsigned
fundamental linking number £(21, 1) is found to be equal
to 1.

All investigated linking numbers have been
found to be in agreement with the template predic-
tions. The topelogy of the attractor generated by
the model is therefore compatible with the template
induced by the experimental symmetric attractor.
The same orbit spectrum could be obtained by act-
ing on the control parameters of the model.

5. Nature of the Equivalence

We have seen that the attractors generated by
Chua’s system are topologically equivalent to the
ones observed on the experimental electronic cir-
cuit. In this case, we have a favorable situation
where the symmetry properties may be preserved
by a reconstruction method starting from a single
equivariant variable with an embedding dimension
equal to 3.

This is confirmed by using the z-variable to ob-
tain a reconstructed attractor (Fig. 37). This re-
constructed attractor may be favorably compared
with the X-induced attractor displayed in Fig. 16.

If the z-induced Chua’s attractor looks rather
similar to the experimental attractor Ay, this is
not necessarily the case for each variable of the
Chua’s system. Indeed, it has been shown that
each variable may give a particular and different
point of view of a system when it is used to recon-
struct a phase space [Letellier & Gouesbet, 1996].
Thus, although the measured z-variable from the
experimental electronic circwuit is rather close to the

4 T

2 4
S~~~
P
% ol -
S
¥

2~ i

4

4 -2 0 2 4
Z(t)

Fig. 37. z-induced attractor of the Chua's system. The

three fixed points are located on the bissectrix line of the
plane spanned by {z(t), z{t + r)} where 7 = 0.5s.
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z-variable of the Chua’s circuit, it is not ensured
that it remains true for the z- or y-variables.

In order to state the point taken in view of the
variables, let us start by discussing the fixed points
of Chua’s equations. There are three fixed points.
One, labeled Fp, is associated with the origin of the
state space and the two others are given by:

3

Ei:i§
Fy={yzx=0 (65)

e 3

+=F3-

The three fixed points are located on a line defined
by y = 0 in the zy-plane. It then immediately ap-
pears that the y-variable provides a rather marginal
view of the attractor since the three fixed points Fop
and F.. are not distinguished by this variable. Con-
sequently, the reconstructed atiractor cannot ex-
hibit three fixed points but only one. This result
is easily viewed on the y-induced Chua’s attractor
displayed in Fig. 38.

 Indeed, the y-induced attractor with a time
delay reconstruction method (Fig. 38), although be-
ing equivariant, does not present two wings as ex-
hibited on the original Chua’s attractor. This is
a great consequence of the absence of distinction
between the three fixed points when using the y-
variable. We have here an interesting case of a sym-
metric atiractor reconstructed from an equivariant
variable which does not exactly preserve the nature
of the inversion symmetry of the original attractor.
The two wings are now inextricably combined and

04

02 r

Y(t+T)

Fig. 38. y-induced attractor of the Chua’s system. The time
delay is T = 0.4s.

it is even rather difficult to compute a pertinent
Poincaré map.

When one uses a reconstruction method to ob-
tain a global vector field, we generally possess a sin-
gle scalar time series. Each variable spanning the
reconstructed phase space is derived from a single
one and therefore has the same point of view of the
system. Therefore, when the dimension of the re-
constructed phase space is small, the choice of the
variable uged for reconstruction is of importance.

6. Conclusion

We have extensively studied an experimental elec-
tronic circuit for two control parameter values. We
have shown that the dynamics presents some syrm-
metry properties. The two experimental attractors
have been found to be topologically compatible with
two attractors of the Chua’s circuit, Moreover, a
model of the experimental circuit has been checked
by using a topological analysis. We have also dis-
cussed the case when a variable may induce a topol-
ogy modification. This is of particular interest for
the choice of the recorded time series. Indeed, the
second time series recorded on the experimental cir-
cuit has been found to induce an attractor whose
topology is slightly different from the topology of
the attractor induced by the first variable.
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