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The dawn of chaotic

dynamical systems
(from early beginning to nowadays)

The History of chaotic iterations (discrete dynamical 

systems) and chaotic differential equations 

(continuous dynamical systems) is strongly 

intertwined 



The dawn of chaotic iterations (I)

  The study of nonlinear dynamics is relatively recent

    with respect to the long historical development of the

    early mathematics since the Egyptian and the Greek

    civilizations. The beginning of this study can be

    traced to the phenomenal work of Henri Poincaré. 

  The Poincaré map being an essential tool linking

    differential equations and mappings.
   Henri Poincaré 

    (1854-1912) Concerning iterations theory, 

   one has to include in this field 

   of research the pioneer works 

   of Gaston Julia and Pierre Fatou 

   related to one-dimensional maps

   with a complex

                           variable, near 

   a century ago.
     Pierre Fatou       Gaston Julia

      1878-1929    “Julia set”     1893-1978



The dawn of chaotic iterations (II)

  In France Igor Gumosky and Christian Mira began

   their mathematical research in 1958. They 

   produced a considerable work on the matter (theory 

  of boxes in the boxes for example). Among their

   discoveries one can emphasize on their family of 

   Igor Gumowsky    attractors from an aesthetic point of view (of course 

    it is only a microscopic point of view of what they 

  have produced)

  The Gumowski-Mira attractor:

    Christian Mira

      Christian Mira

is sensitive to slight changes of parameters a and b 



The dawn of chaotic iterations (III)

    a = - 0.918, b = 0.9

a = - 0.93333, b = 0.92768



The dawn of chaotic differential equations (I)

Apart of mathematical research, first 

came the work of Edward Lorenz a 

meteorologist who studied the 

Rayleigh-Bénard problem in 1963

Motion of a flow heated from below

Edward Lorenz (1917-2008)



The dawn of chaotic differential equations (II)

Flow equations in a physical coordinate system (constant along y)

 Rayleigh number,  Prandtl number,  (x,t,z) stream function,

 (x,t,z) temperature perturbation vs linear profile

Discretization

of equations

In Fourier series:
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The dawn of chaotic differential equations (III)

Lorenz Attractor (1963)

Flow equations in a physical coordinate

system (constant along y)
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"Butterfly effect"



The dawn of chaotic iterations (IV)

Two-Dimensional discrete dynamical systems: Hénon mapping (1976)

Metaphoric model of Poincaré map of Lorenz equation.

Associated difference equation

with initial value:

Linearized version in 1978 
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The dawn of chaotic differential equations (IV)

Rössler’s chimical multivibrator (1976)

(from Christophe Letellier and Valérie Messager (2010))



The dawn of chaotic differential equations (V)

The Rössler attractor (1976)

In 1976, O. E. Rössler followed a different

direction of research to obtain a chaotic model.

Considering that, due to extreme simplification

used by Lorenz in order to obtain his equation,

there is no actual link between this equation

and the Rayleigh-Benard problem from which 

it originated. He followed a new way in the 

study of a chemical multi-vibrator. 

Conference for the 80th birthday of 

Otto Rössler, October  9-11, 2023
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The dawn of chaotic iterations (V)

In Japan the Hayashi’s School (with disciples like Ikeda, Ueda and Kawakami) 

in the same period, were motivated by applications to electric and electronic 

circuits. Mappings were used as models of behavior of electric circuits.

 The Ikeda attractor (1980):

 has a chaotic attractor when u  0.6

u = 8.6         u = 8,9



The dawn of chaotic differential equations (VI)

The Chua attractor (1983)
In 1983, L. O. Chua, invented a very simple 

electric circuit producing chaos
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The dawn of chaotic differential equations (VII)

Chua attractor on oscilloscope
Contrarily to Lorenz and Rössler attractor, Chua circuit corresponds to a real device



The dawn of chaotic differential equations (VIII)

Spiral-linear attractor

  published in 1992 



The dawn of chaotic dynamical systems

In the last 50 years long history of chaotic iterations leading to the new 

concept of strange attractors, and corresponding chaotic differential 

systems, one can mention few important dates:

 Sharkovsky order        Lorenz attractor              Ruelle “strange  Yorke  “Chaos” 

           1962                              1963               attractor” 1970          1975  

   Rössler attractor            Hénon map                       Belykh map                     Chua attractor

         1976                1976                                     1976                                   1983



From theory to applications

Since the last 50 years many many papers were published in pure

mathematics or statistical physics concerning research on properties

of nonlinear maps and chaotic iterations (entropy, ergodicity,

Lyapunov and Hurst exponents, invariant measure, fractal

dimensions, border-collision, …)

However applications of nonlinear mappings in applied mathematics

and engineering, biology, physics, …began only 20 years after.

- Secure communications,

- Chaos to randomness : Chaotic Pseudo Random Generators,

- Cryptography based Chaos,

- Global optimization (Particle swarm optimization (PSO) ),

- Evolutionary Algorithms,

- Memristors

- Economy



Secure communication via chaotic synchronization

The first example of the use of chaos for cryptographic purpose goes back to 

the early 90’ when L. Pecora and T. Carroll found how to synchronize chaotic 

systems. This discovery was an unexpected  breakthrough for applications.

A first reported experimental secure communication system via chaotic 

synchronization using Chua’s circuit was built two years after (1992). 

   



Secure communication via chaotic synchronization

The signal recovered from this system which uses the Chua circuit, contained some 

inevitable noise which degrades the fidelity of the original message. 

   The system was soon improved (1993), by cascading the output of the receiver in the 

original system, into an identical copy of this receiver: 



From chaotic attractors

To Pseudo Random Number

Generators (PRGN) 



The route from chaos to pseudo-randomness via 

chaotic or mixing undersampling



Chaotic and/or mixing undersampling

example with the symmetric tent map

Ultra-weak coupling means

for floating points or for double precision numbers

Ultra-weak coupling is efficient in order to restore
numerically the chaotic properties of chaotic
mappings, avoiding any numerical collapse
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Chaotic and/or mixing undersampling
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Step 2: Chaotic and mixing under sampling

Example in 4-D: Let be three thresholds

instead of using directly the coupled sequences

One mixes and samples those sequences using the fourth one:

using:
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Another method: Tent-Logistic map

We introduced a combined Tent-Logistic map:

When used in more than one dimension, map can be

considered as a two variable map:
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Ring coupling of several 1-D maps

Instead of using one single 1-D maps , it is

possible to use simultaneously several (up to 10 or 20)  

1-D maps coupled in a ring way. 

Restraining the new p-dimensional map to the torus: 

   : 1,1 1,1f − → −

 1,1
p

−



Ring coupling of Tent with Tent-Logistic maps

Hence it is possible to define a mapping:

where

with the coefficients ki set to -1 or +1

In order to maintain dynamics into

the torus we use the injection:
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Another 2-D chaotic PRNG

In order to improve the previous topologies, we define a

new map with  = 2

With a new injection mechanism which fits better the Torus
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Injection mechanism of  alternative map
SC

MTTL
2



Left: Approximate density function of alternative

 map, on the phase plane 

Right: Approximate density function of   alternative

map, on the phase delay plane 
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Other numerical experiments using

multi-core processor



These results show that the pace of computation is very high.

 When        is the mapping tested, and the machine used is 

a laptop computer with a Core i7 4980HQ processor with 8 

logical cores, computing 1011 iterates with five parallel streams 

of PRNs leads to around 2 billion PRNs being produced per 

second. 

Since these PRNs are computed in the standard double precision 

format, it is possible to extract from each 50 random bits (the 

size of the mantissa being 52 bits for a double precision floating-

point number in standard IEEE-754). Therefore, 

can produce 100 billion random bits per second, an incredible 

pace! With a machine with 4 Intel Xeon E7-4870 processors 

having a total of 80 logical cores, the computation is twice as 

fast, producing  200 billion random bits per second.
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Chaotic Cryptography



Cryptography based chaos

Several hundred of publications in this domain, not only for cryptography but 

also for generating Hash 

functions (important for 

mining cryptocurrencies

like Bitcoin, Ethereum…)



Recent methods

These methods are not only mathematical but implemented of FPGA cards



Chaotic Optimization



Random and chaotic optimization

The space of variable is randomly

explored by tossing random numbers

for every variable.

In 2003, Riccardo Caponetto et al.

introduced chaotic numbers in

Evolutionnary Algorithms, they found

more efficient than random numbers.
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chaotic optimization in industry

In 2007, Leandro dos Santos Coelho used a Chaotic Optimization

Method based On Lozi Map (COLM) he introduced few years before, 

for industrial application.



PID controller

The Proportionnal-Integral-Derivative (PID) controller continues to be the main

component in industrial control systems, included in the following forms:

embedded controllers, programmable logic controllers, and distributed

control systems.

It is reported that 80% of PID type controllers in the industry are poorly/less

optimally tuned and that 30% of the PID loops operate in the manual mode

and 25% of PID loops actually operate under default factory settings.



PID controller

As modelled in the paper of Coelho, the transfer function of PID

controller (Fig. 1) is described by the following equation in the

continuous s-domain (Laplace operator):

where U(s) and E(s) are the control (controller output) and tracking error

signals in s-domain, respectively; Kp is the proportional gain, Ki is the

integration gain, and Kd is the derivative gain.

Tuning the PID is searching the values of Kp, Ki and Kd which minimize

an objective function.



AVR (Automatic-Voltage-Reduction)

A simplified AVR system comprises four main components, namely amplifier,

exciter, generator, and sensor . In the work of Coelho the AVR system is

compensated with a PID controller. A block diagram of AVR system using

PID control and chaotic optimization procedure is shown in Fig. 2.



Memristors
Electric device invented by Leon Chua in1971, and realized in 

nanotechnology since 2008
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Memristors

Among hundreds of memristor models some are linked to chaotic maps.



Economy
Example of beautiful Figure from Commendatore, P., Kubin, I., and Sushko, I., 2015 , Typical 

bifurcation scenario in a three region symmetric new economic geography model. Mathematics and 

Computers in Simulation 108: 63–80



Different basins of attraction



Thank you for your attention


	Diapositive 1
	Diapositive 2
	Diapositive 3 The dawn of chaotic iterations (I)
	Diapositive 4 The dawn of chaotic iterations (II)
	Diapositive 5 The dawn of chaotic iterations (III)
	Diapositive 6 The dawn of chaotic differential equations (I)
	Diapositive 7 The dawn of chaotic differential equations (II)
	Diapositive 8 The dawn of chaotic differential equations (III)
	Diapositive 9 The dawn of chaotic iterations (IV)
	Diapositive 10 The dawn of chaotic differential equations (IV)
	Diapositive 11 The dawn of chaotic differential equations (V)
	Diapositive 12 The dawn of chaotic iterations (V)
	Diapositive 13 The dawn of chaotic differential equations (VI)
	Diapositive 14 The dawn of chaotic differential equations (VII)
	Diapositive 15 The dawn of chaotic differential equations (VIII)
	Diapositive 16 The dawn of chaotic dynamical systems
	Diapositive 17 From theory to applications
	Diapositive 18 Secure communication via chaotic synchronization
	Diapositive 19 Secure communication via chaotic synchronization
	Diapositive 20
	Diapositive 21 The route from chaos to pseudo-randomness via chaotic or mixing undersampling
	Diapositive 22 Chaotic and/or mixing undersampling
	Diapositive 23 Chaotic and/or mixing undersampling
	Diapositive 24 Another method: Tent-Logistic map
	Diapositive 25 Ring coupling of several 1-D maps
	Diapositive 26 Ring coupling of Tent with Tent-Logistic maps
	Diapositive 27 Another 2-D chaotic PRNG
	Diapositive 28
	Diapositive 29
	Diapositive 30 Other numerical experiments using multi-core processor
	Diapositive 31
	Diapositive 32
	Diapositive 33 Cryptography based chaos
	Diapositive 34 Recent methods
	Diapositive 35
	Diapositive 36 Random and chaotic optimization
	Diapositive 37 chaotic optimization in industry
	Diapositive 38 PID controller
	Diapositive 39 PID controller
	Diapositive 40 AVR (Automatic-Voltage-Reduction)
	Diapositive 41
	Diapositive 42
	Diapositive 43 Memristors
	Diapositive 44 Economy
	Diapositive 45 Different basins of attraction
	Diapositive 46

