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Would chaotic dynamical systems be
more beautiful if they were useless?
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The dawn of chaotic
dynamical systems

(from early beginning to nowadays)

The History of chaotic iterations (discrete dynamical
systems) and chaotic differential equations
(continuous dynamical systems) is strongly

Intertwined




The dawn of chaotic iterations (l)

The study of nonlinear dynamics is relatively recent
with respect to the long historical development of the
early mathematics since the Egyptian and the Greek
civilizations. The beginning of this study can be
traced to the phenomenal work of Henri Poincaré.
The Poincaré map being an essential tool linking
differential equations and mappings.

Henri Poincaré
(1854-1912) Concerning iterations theory,

one has to include in this field

of research the pioneer works

of Gaston Julia and Pierre Fatou
related to one-dimensional maps
with a complex ‘
variable, near
a century ago.

Gaston Julia

Pierre Fatou :
1878-1929 “Julia set” 1893-1978




The dawn of chaotic iterations (Il)

In France Igor Gumosky and Christian Mira began
their mathematical research in 1958. They

produced a considerable work on the matter (theory
of boxes in the boxes for example). Among their
discoveries one can emphasize on their family of

lgor Gumowsky  attractors from an aesthetic point of view (of course

it IS only a microscopic point of view of what they
have produced)

The Gumowski-Mira attractor:

Christian Mira

{ n+l f(x )+ 1}3? . - . x2

. with (x)=ax+2(1—a)
H-i-l f(xr?ﬂ) f | 1 + sz

IS sensitive to slight changes of parameters a and b




The dawn of chaotic iterations (llI)

a=-0.918,b=0.9




The dawn of chaotic differential equations (I)

Apart of mathematical research, first
came the work of Edward Lorenz a
meteorologist who studied the
Rayleigh-Bénard problem in 1963

Motion of a flow heated from below

Edward Lorenz (1917-2008)




The dawn of chaotic differential equations (ll)

Flow equations in a physical coordinate system (constant along y)
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The dawn of chaotic differential equations (lll)

Lorenz Attractor (1963)

Flow equations in a physical coordinate
system (constant along y)
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The dawn of chaotic iterations (1V)

Two-Dimensional discrete dynamical systems: Hénon mapping (1976)

Metaphoric model of Poincaré map of Lorenz equation.
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The dawn of chaotic differential equations (1V)

Rossler’s chimical multivibrator (1976)
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Fig. 12. Combination of an Edelstein switch with a Turing
oscillator in a reaction system producing chaos. E = switch-
ing subsystem, T = oscillating subsystem; constant pools
(sources and sinks) have been omitted from the scheme as
usual. (Adapted from [Réssler, 1976a]. )

(from Christophe Letellier and Valérie Messager (2010))




The dawn of chaotic differential equations (V)

The Ro4ssler attractor (1976)

In 1976, O. E. Rossler followed a different
direction of research to obtain a chaotic model. ,
Considering that, due to extreme simplification

used by Lorenz in order to obtain his equation,
there is no actual link between this equation
and the Rayleigh-Benard problem from which

it originated. He followed a new way in the
study of a chemical multi-vibrator.
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X1=_X2_X3’
X, =X, +aX,,
k>‘<3=b+x3(xl—c),

A

a=0.2,b=0.2,c=57

Conference for the 80th birthday of
Otto Rdssler, October 9-11, 2023




The dawn of chaotic iterations (V)

In Japan the Hayashi's School (with disciples like Ikeda, Ueda and Kawakami)
In the same period, were motivated by applications to electric and electronic
circuits. Mappings were used as models of behavior of electric circuits.

The Ikeda attractor (1980):

has a chaotic attractor when u > 0.6

x _,=1+u(x cost —y sint )
J;F}+f = ”-(xr.' S};” f” + -«vn cos fr.- ) ,
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I+x +y°

with t, =0.4—

u=28.6 u=38,9




The dawn of chaotic differential equations (VI)

The Chua attractor (1983)

In 1983, L. O. Chua, invented a very simple
electric circuit producing chaos
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The dawn of chaotic differential equations (VII)

Chua attractor on oscilloscope
Contrarily to Lorenz and Rossler attractor, Chua circuit corresponds to a real device




The dawn of chaotic differential equations (VIll)

Fig. 1. Alpazur oscillator.
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The dawn of chaotic dynamical systems

In the last 50 years long history of chaotic iterations leading to the new
concept of strange attractors, and corresponding chaotic differential
systems, one can mention few important dates:

By N

Sharkovsky order Lorenz attractor Ruelle “strange Yorke “Chaos”
1963 attractor” 1970 1975
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Rdssler attractor Hénon ma Belykh map Chua attractor
1976 1976 1976 1983




From theory to applications

Since the last 50 years many many papers were published in pure
mathematics or statistical physics concerning research on properties
of nonlinear maps and chaotic iterations (entropy, ergodicity,
Lyapunov and Hurst exponents, invariant measure, fractal
dimensions, border-collision, ...)

However applications of nonlinear mappings in applied mathematics
and engineering, biology, physics, ...began only 20 years after.

- Secure communications,

- Chaos to randomness : Chaotic Pseudo Random Generators,
- Cryptography based Chaos,

- Global optimization (Particle swarm optimization (PSO) ),

- Evolutionary Algorithms,

- Memristors

- Economy




Secure communication via chaotic synchronization

The first example of the use of chaos for cryptographic purpose goes back to
the early 90" when L. Pecora and T. Carroll found how to synchronize chaotic
systems. This discovery was an unexpected breakthrough for applications.

A first reported experimental secure communication system via chaotic
synchronization using Chua’s circuit was built two years after (1992).

Master/Slave Chua's Circuit

IS
IS

Master Slave




Secure communication via chaotic synchronization

The signal recovered from this system which uses the Chua circuit, contained some
inevitable noise which degrades the fidelity of the original message.

The system was soon improved (1993), by cascading the output of the receiver in the
original system, into an identical copy of this receiver:

International Journal of Bifurcation and Chaos, Vol. 3, No. 5 (1993) 1318-1325

© World Scientific Publishing Company
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Fig. 2. Block diagram of the electronic circuit implemented
in Fig. 1.
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Fig. 1. Electronic circuit implementation of the two-stage “receiver” consisting of two identical copies of the circuit given in
Fig. 2(b) of Kocarev et al. [1992].




From chaotic attractors

To Pseudo Random Number
Generators (PRGN)




The route from chaos to pseudo-randomness via
chaotic or mixing undersampling
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Chaotic and/or mixing undersampling

Step 1: Ultra-weak coupling of 1-D maps

f(x)=1-2 |x| Xpyg =1—2 ‘Xn‘ example with the symmetric tent map

(X =(1=3e )f(x})+e, f(x)+e, f(x3)+e, f(x7)
<Xr?+1 =82f(xr11)+(]_382)f(’xr?)+82f(xr?)-l_ng(xr?)
Xr?+1 =83f(x;)+83f(x§)+(]—383)f(x§)+83f(x;l)
KXo =84 S (X )Fe, f(x3)+e, f(x)+(1=3e,)f(x;)

Ultra-weak coupling means

-7 ~ -14 o
& R 107" for floating points or &} 10 for double precision numbers

Ultra-weak coupling is efficient in order to restore
numerically the chaotic properties of chaotic
mappings, avoiding any numerical collapse




Chaotic and/or mixing undersampling

Step 2: Chaotic and mixing under sampling

Example in 4-D: Let be three thresholds -1 <T,<T,<T;<1
iInstead of using directly the coupled sequences

1yl 1 1 U1 2 2 2 2 2
(XO,Xl,Xz,...,Xn,X ) (Xo,Xl,X2 ..... xn,xn+1,...) and

n+1?

3 3 3 3 3
(xo, X)) X5y eeny Xy X )

n+l1?

One mixes and samples those sequences using the fourth one:

4 4 4 4 4 (L1 4
(%5 X3 0 X Xy ) [ it X e] LT
using: Xq =5 Xr? 1ii XrA{ E[ TZ,T3[

x. iff x;e[T,q

n

o - g
In order to obtain: (xo, Xps Xg5 05 Xgs X1 ) which are pseudo-random.




Another method: Tent-Logistic map

We introduced a combined Tent-Logistic map: TL,
f,(X)=TL, () =L,00)=T,(x) = ux = x* = pl[x| =X

When used in more than one dimension, TL, map can be
considered as a two variable map:

TL (X X2 ) = [V (x*))?)

05 05
[
04 06§08 1 12 12 1 os 08/ 04 02 0 02 04 \0&6 08 1 12 12 1 08 08 04 02 o 02 04 o6 08 12
as a5
f
1 1
1




Ring coupling of several 1-D maps

Instead of using one single 1-D maps f:[-1.1]—>[-11] , itis
possible to use simultaneously several (up to 10 or 20)
1-D maps coupled in a ring way.

Restraining the new p-dimensional map to the torus: [-1.1]°

Gl &2
O xm — \ x3 f,)
\
Cx< /3543
i x]




Ring coupling of Tent with Tent-Logistic maps

Hence it is possible to define a mapping: M : PP
where 3P =[-12]° < RP
with the coefficients k' set to -1 or +1

(x®) (xO) (T,(xP)+k xTL, (x®, x)

n+1
X\ x (2 T,(xP)+k2xTL, (x?, x)

n+1

(p) (p) 1
X7 ) () T, 007) +kPxTL, (P, %)
In order to maintain dynamics into {if(XrLl <-1) add 2
the torus we use the injection: if (X, >1) substract 2

n+1




Another 2-D chaotic PRNG

In order to improve the previous topologies, we define a
new map with u = 2

(1)

n+1
MTTLEC(Xf]l),Xf]Z))=< ) 212 1)
xn+1=1—2(xn ) +2((Xpy 7=

~

=1+2( xgz) )2 )2 x%l)

)

With a new injection mechanism which fits better the Torus

2 2
[-11]" =R if (x{') >1) then substract 2

n+1
if (x!2) <—1) then add 2
if (x!?)>1) then substract 2

.

n+1
n+1
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Injection mechanism of MTTL,™ alternative map
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Other numerical experiments using
multi-core processor

Journal of Difference Equations and Applications

155M: 1023-6198 (Print) 1563-5120 (Online) Journal hamepage: http/fwwow. tandfonline. comloi/gdea2d

How useful randomness for cryptography can
emerge from multicore-implemented complex
networks of chaotic maps

Oleg Garasym, Jean-Pierre Lozi & René Lozi

- I Fublished online: 15 Feb 2017.




These results show that the pace of computation is very high.

When 11 RC2D s the mapping tested, and the machine used is
a laptop cor?nputer with a Core 17 4980HQ processor with 8
logical cores, computing 10! iterates with five parallel streams
of PRNs leads to around 2 billion PRNSs being produced per
second.

Since these PRNs are computed in the standard double precision
format, it is possible to extract from each 50 random bits (the
size of the mantissa being 52 bits for a double precision floating-

point number in standard IEEE-754). Therefore, TTLF;C oD
can produce 100 billion random bits per second, an incredible

pace! With a machine with 4 Intel Xeon E7-4870 processors
having a total of 80 logical cores, the computation Is twice as
fast, producing 200 billion random bits per second.




Chaotic Cryptography




Cryptography based chaos

Several hundred of publications in this domain, not only for cryptography but

Available online at www.sciencedirect.com _ a|SO fOr generatlng HaSh
_ sormnor (@oimeor: Noninear Scionc snd functions (important for
and Numerical Sumalation 10 (008) 715.723 S mining cryptocurrencies

www.elsevier.com/locatefensns

like Bitcoin, Ethereum...)

Short communication
Cryptography using multiple one-dimensional chaotic maps

N K. Pareek *°, Vinod Patidar *, K.K. Sud *®*

Multi-algorithmic Cryptography using Deterministic

Chaos with Applications to Mobile Communications

Jonathan M Blackledge, Fellow, IET, Fellow, BCS, Fellow, IMA Fellow, RSS

e Available online at www.sciencedirect.com
g
) *.” ScienceDirect PHYSICS LETTERS A
sl
ELSEVIER Physics Letters A 366 (2007) 211-216

www.elsevier.com/locate/pla

Theory and practice of chaotic cryptography

TM. Amigé**, L. Kocarev®, I. Szczepanski ©




Recent methods

These methods are not only mathematical but implemented of FPGA cards

friried applied -
sciences ﬂ“\D\Py
Article

Design, Implementation, and Analysis of a Block Cipher Based
on a Secure Chaotic Generator

Fethi Dridi 2, Safwan El Assad >*({, Wajih El Hadj Youssef !, Mohsen Machhout ! and René Lozi

v
» l . _— 5 Diffusion Layer based on |
Plaintext p, —Y—» ﬂm"]ﬂr Ambatiintion » the 2-D cat map and HAD }=—L— Ciphertext c,
ver based on S-Box
I & VAD |
F F 1
I kd |
| S-Box |
Construction
I Y |
______ N
IV ———>  pyeudo Random Number Generator of Chaotic Sequences
K — (PRNG-CS)
Figure 1. Diagram of the encryption process.




Chaotic Optimization




Random and chaotic optimization

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, MO, 3, JUNE 2003 289

Chaotic Sequences to Improve the Performance of
Evolutionary Algorithms

Riccardo Caponetto, Member, IEEE, Luigi Fortuna, Fellow, JEEE, Stefano Fazzino, and
Maria Gabriella Xibilia, Member, JEEE

U,
The space of variable is randomly

explored by tossing random numbers 2,(2)
for every variable.

In 2003, Riccardo Caponetto et al.
iIntroduced chaotic numbers in
Evolutionnary Algorithms, they found
more efficient than random numbers.
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chaotic optimization in industry

In 2007, Leandro dos Santos Coelho used a Chaotic Optimization
Method based On Lozi Map (COLM) he introduced few years before,
for industrial application.

Available online at www.sciencedirect.com

. : CHAOS
ScienceDirect SOLITONS & FRACTALS

Chaos, Sohtons and Fractals 39 (2009) 1504-1514

www.elsevier.com/locate/chaos

Tuning of PID controller for an automatic regulator voltage
system using chaotic optimization approach

Leandro dos Santos Coelho

Pontifical Catholic University of Paranda, PUCPR Industrial and Systems Engineering Graduare Program,
LASIPPGEPS Imaculada Conceigdo, 1133, Zip code 80215-901, Curitiba, Parand, Brazil

Accepted 1 June 2007




PID controller

The Proportionnal-Integral-Derivative (PID) controller continues to be the main
component in industrial control systems, included in the following forms:
embedded controllers, programmable logic controllers, and distributed
control systems.

PID controller

® Proportional (P) action

reference error signal control signal output signal
— - b Integral () action L | process »

Uy| Derivative (1)) action

SCnsOr

Fig. 1. Block diagram representation of a PID controller in a closed loop system.

It is reported that 80% of PID type controllers in the industry are poorly/less
optimally tuned and that 30% of the PID loops operate in the manual mode
and 25% of PID loops actually operate under default factory settings.




PID controller

As modelled in the paper of Coelho, the transfer function of PID
controller (Fig. 1) is described by the following equation in the
continuous s-domain (Laplace operator):

U(’S‘) Ki
E(s) s

GPID(S) :P—l—[ —|—D —

where U(s) and E(s) are the control (controller output) and tracking error
signals in s-domain, respectively; K is the proportional gain, K; is the
Integration gain, and K is the derivative gain.

Tuning the PID is searching the values of K, K; and Ky which minimize
an objective function.




AVR (Automatic-Voltage-Reduction)

A simplified AVR system comprises four main components, namely amplifier,
exciter, generator, and sensor . In the work of Coelho the AVR system is
compensated with a PID controller. A block diagram of AVR system using
PID control and chaotic optimization procedure is shown in Fig. 2.

»|  Chaotic optimization [«

F 9
optimized parameters /
K, Ki.K4
PID controller / amplifier exciter generator
Veer(s) K. 10 1 K Vi(s)
—o K,+—+K; s 1o > > g >
§ 0.1-5+1 0.4 -5+1 T, s+l
J SEensor
1
0.01-5+1

Fig. 2. Block diagram representation of an AVR system using a PID controller with chaotic tuning.




Memristors

Electric device invented by Leon Chua in1971, and realized in
nanotechnology since 2008

TMay 2008 | www.nature.com/nature | $10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

THE MEMRISTOR

‘Missing’ circuit
element found
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Memristors

Among hundreds of memristor models some are linked to chaotic maps.

. mathematics ﬁVI\D\Py
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Article

Memristor-Based Lozi Map with Hidden Hyperchaos

Jiang Wang, Yang Gu, Kang Rong, Quan Xu ** and Xi Zhang *

School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China

* Correspondence: zhangxi.98@163.com

2.3. Memristor-Based Lozi Map with no Fixed Points

To promote the chaos complexity of the Lozi map, a new 3-D memristor-based Lozi
map is proposed by coupling the discrete-time memristor given in (3) into the original Lozi
map described by (1). For the discrete memristor, the state variable 1, in the Lozi map is
denoted as the input, and the state variable z; is denoted as the internal state. Then the
output of the discrete memristor becomes v, = y, sin z;,;, which is coupled to the second
equation of the Lozi map after the gain k. Therefore, the memristor-based Lozi map can be
constructed as

Xpp1 =1 —alxu| + Y,
Yn+1 = bx, + kyn sinzy, (4)
Zp+1 = Yn + Zy,

where k is the coupling gain between the discrete-time memristor and the Lozi map.




Economy

Example of beautiful Figure from Commendatore, P., Kubin, I., and Sushko, I., 2015, Typical
bifurcation scenario in a three region symmetric new economic geography model. Mathematics and
Computers in Simulation 108: 63-80

variables, A1 ; and A, . Taking into account the constraints, after dropping the time subscripts, the resulting dynamic
system corresponds to a two-dimensional (2D) piecewise smooth map Z given by

Z (A1, A2) = (Z1(A1, A2), Zo(A1, A2)), 9
where
0 forM, <0,
M, forM, >0, M; >0, M,+ M <1,

Z (A1, A2) =

S

/ (My+ M) forM, >0, M;>0,M,+ M>1,
/ (1 — M) forM, >0, M;<O0O M, +M; <1,

fOIMr > 0, Ms =< 0» Mr + MsZL
. r = 1 r = 2
with and s
s=2 s=1

M, = My(h1,A2), M;= M(hy, A2).

S

—

Here the central Eq. (8) can be written as

My =11 +p(K1 = 1)), My =21+ y(K2—1)), (10)
where
K — A/ia/(afl)sl/Al + P52/ A2 + 53/ A3) Ky = Ag/(afl)SZ/AZ + @(s1/A1 + 53/A3)
D ’ D ’

The central equation of the dynamicisystem, holding for r= 1, 2, 3, is given by

3
AMypaA2) — D e 1A A, A
M, = Ars (1 + ywr( 1.t 2,31) Zsfl S‘tws( 1,7 2,?)) ’

szl)hs,rws()hl,h A21)




Different basins of attraction




Thank you for your attention
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