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Abstract

Since the three types of intermittency have been theoretically described, many experimental observations of such
regimes have been reported. Chaotic behaviors occurring after torus breakdowns and quasi-periodic regimes are also
very often observed. It is not so surprising that intermittencies on tori were never reported as soon as it is understood
that these common characteristic of intermittencies should be investigated in a Poincaré section of a Poincaré section,
that is, in a set which is not possible to define. A specific approach is therefore required to identify them as shown in the
paper with two examples of type-I intermittency on tori solution to two different systems.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Since the theoretical description of the three types of intermittency by Pomeau and Manneville [1], many observa-
tions of intermittent behaviors have been reported in hydrodynamics [2,3], electronics [4,5], and laser dynamics [6–9].
Intermittent behaviors are very important since they are among the most important routes to chaos with the period-
doubling cascade and the Newhouse–Ruelle–Takens scenario [10]. In the latter scenario, few successive Hopf bifurca-
tions imply a quasi-periodic regime and then a chaotic behavior. Quasi-periodic regimes are characterized by phase por-
traits structured on tori. From quasi-periodic regimes, many routes to chaos can be distinguished [11,12]. The most
common route is a torus breakdown as described by the Curry–Yorke scenario [13]. More rarely observed is the torus
breakdown through a crisis with an unstable periodic orbits [14] which is associated with a type-II intermittency [15].
Such a scenario has been observed in a glow discharge plasma [16].

Another route to chaos from a quasi-periodic regime is the period-doubling cascade on tori [17–20]. In such a case,
Poincaré sections look like period-1, period-2, period-4 limit cycles and so on up to a Rössler-like chaotic attractor. The
main difference with the usual Rössler system is that the Rössler-like structure in the Poincaré section is obtained from
many points in the Poincaré section, the full picture arising point after point, and not from a simple continuous trajec-
tory. The key point is that the unimodal map with a differentiable maximum necessarily associated with any period-
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doubling cascade cannot be drawn since it would require to compute a Poincaré section of a Poincaré section, a set
which cannot be defined.

The subsequent part of this paper is organized as follows. Section 2 is devoted to a simple case of type-I intermit-
tency solution to a detuned monomode laser system. Section 3 discusses a more complicated case where there is no pos-
sibility to identify a variable allowing to reach the usual characteristics. Section 4 gives the conclusion.
2. A simple example in a detuned laser

As for any system associated with a unimodal map with a differentiable maximum, a type-I intermittency must be
identified before each ‘‘periodic-window’’, as observed in a bifurcation diagram of the logistic map. For a system with a
period-doubling cascade on tori, a ‘‘periodic-window’’ corresponds to a quasi-periodic regime structured on a T 2 torus.
The two frequencies are (i) the frequency f1 around the rotation axis and (ii) the frequency f2 with which the trajectory
turns along the section of the torus. In a ‘‘periodic-window’’, a sub-harmonic of the main frequency occurs and the
torus can no longer be embedded in a 3D space since its Poincaré section thus has self-intersections. The corresponding
quasi-periodic regime is therefore embedded in a space with a dimension at least equal to 4.

A very first example of type-I intermittency on tori is observed in a detuned monomode laser, described by the
Zeghlache–Mandel system [22]
_x1 ¼ �rx1 þ ry1

_x2 ¼ �rx2 þ ry2

_y1 ¼ �y1 � dy2 þ x1z

_y2 ¼ �y2 þ dy1 þ x2z

_z ¼ �cðz� Rþ x1y1 þ x2y2Þ

8>>>>>><
>>>>>>:

ð1Þ
where x1 ¼ RðeÞ and x2 ¼ IðeÞ are the normalized electric field amplitudes, y1 ¼ RðpÞ and y2 ¼ IðpÞ the normalized
polarizations and z ¼ d the normalized population inversion. R is the pumping rate, r is the ratio of the cavity decay
rate of the field over the decay rate of the polarisation and c is the normalized relaxation rate of the inversion. These
equations are invariant under the symmetry Uð1Þ : ðe; p; dÞ ! ðeeih; peih; dÞ, that is, a continuous rotation symmetry
[20]. The detuning d of the field frequency from the atomic resonance transition frequency induces the continuous rota-
tion symmetry. When d = 0 and with a coordinate transformation, the system reduces to the Lorenz system. Any behav-
ior observed on the Lorenz system can therefore be observed in the Zeghlache–Mandel system, but conjugated with a
rotation symmetry (d–0). A limit cycle of the Lorenz system thus becomes a quasi-periodic regime for the Zeghlache–
Mandel system.

The time evolution of the z-variable is characteristic of the type-I intermittency alternating laminar phases and cha-
otic bursts (Fig. 1a). In the z-induced differential embedding, that is, a space spanned by the z-variable and its successive
time derivatives, the laminar phases are associated with the trajectory close to the ghost period-3 limit cycle. Using the
intensity I ¼ x2

1 þ x2
2 – the common physical quantity recorded in laser experiments – provides similar results as for the

z-variable since, in this example, it modds out the phase h due to the detuning d.
The z-variable of system (1) is invariant under the symmetry and any dynamical regime can be easily identified using

the differential embedding induced by this variable [20]. For instance, the tangent bifurcation associated with the type-I
intermittency before the ‘‘period-3 window’’ can be evidenced using a third-return map to a Poincaré section (Fig. 2).

Modding out the phase is not always sufficient to recover the underlying Lorenz dynamics. There are some laser
systems for which the spatial effect blurs the structure when seen from the inversion as well as from the intensity
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Fig. 1. Time series of the z- and x1-variables of system (1) for R = 22, d ¼ 0:66077; c ¼ 0:5 and r = 2.
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Fig. 3. First-return map to a Poincaré section (50,000 points) of the differential embedding induced by the variable x1 of system (1) for
R = 22, d ¼ 0:66077; c ¼ 0:5 and r = 2.
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Fig. 2. Third-return map to a Poincaré section of the differential embedding induced by the z-variables of the Zeghlache–Mandel
system for R = 22, d ¼ 0:66077; c ¼ 0:5 and r = 2. Three tangencies between the map and the bisecting line clearly identify the type-I
intermittency.
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[21]. Since in the present case, the type-I intermittency is well identified, it is interesting to investigate how it is possible
to exhibit the type of intermittency when it is impossible to compute a map with the expected tangencies.

Indeed, when the x1-variable of system (1) is recorded, it is difficult to identify an intermittency (Fig. 1b). The third-
return map (not shown) to the Poincaré section defined by _x1 ¼ 0 and €x1 > 0 does not present the three tangencies as
shown in Fig. 2.

Using a first-return map helps to obtain a simpler structure (Fig. 3). This map clearly presents a mostly visited struc-
ture which, by definition, corresponds to the laminar phases. It can therefore be used to distinguish laminar phases from
chaotic bursts. This is done by using a grid ð400� 400Þ and counting how many times the trajectory visits the pixels. A
pixel pij is associated with laminar phases when it is visited more than a given number of times. The structure associated
with laminar phases is thus identified (Fig. 4a) as well as chaotic bursts (Fig. 4b). It is then straightforward to compute
the distribution DðNÞ of laminar lengths N. In the present case, the distribution (Fig. 5) reveals that there are one short
and one long preferred lengths as expected for a type-I intermittency. We therefore have characterized this intermittency.
3. A more complicated example in a bimode laser

Let us now investigate an example of type-I intermittency on tori observed in a system which does not have a var-
iable allowing an easy identification of the intermittent behavior. This is the case for the four dimensional autonomous
bimode laser model [23,24]



Fig. 4. Structure associated with laminar phases (a) and chaotic bursts (b). Pixels pij associated with laminar phases are selected in
saving pixels visited more than 40 times over 5 � 106 points. Same parameter values as for Fig. 3. (a) Pixels pij for laminar phases. (b)
Pixels pij for chaotic bursts.
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Fig. 5. Distribution of laminar lengths for the system (1) with R = 22, d ¼ 0:66077; c ¼ 0:5 and r = 2.
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_x1 ¼ K� x1 � ðy1 þ by2Þx1

_x2 ¼ cK� x2 � ðy2 þ by1Þx2

_y1 ¼ j �1þ ðx1 þ bx2Þ � a
1þaðy1þy2Þ

� �
y1

_y2 ¼ j �1þ ðx2 þ bx1Þ � a
1þaðy1þy2Þ

� �
y2

8>>>>><
>>>>>:

ð2Þ
Each polarized mode is described by its normalized intensity (y1 or y2) and its normalized population inversion (x1 or
x2) [23]. The initial conditions are x1 ¼ K

1þu1þbu2
; x2 ¼ cK

1þu2þbu1
; y1 ¼ 0:01u1 and y2 ¼ 0:01u2 where u1 ¼ 0:445013 and
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u2 ¼ 0:010008. With b ¼ 0:5, j = 5000, a ¼ 0:005, c ¼ 0:85; a ¼ 0:8 and K ¼ 2:889, there is a torus with three loops
(Fig. 6) on which a period-doubling cascade occurs.

This torus results from the incommensurate frequencies associated with the two modes. There is no symmetry prop-
erties involved here. Increasing the pumping rate K, a period-doubling cascade on tori is observed and, then, chaotic
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Fig. 6. A quasi-periodic regime solution to model (2) with K ¼ 2:889. Other parameter values are b ¼ 0:5, j = 5000,
a ¼ 0:005; c ¼ 0:85 and a ¼ 0:8.
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Fig. 7. Time series of intensity y1 of the bimode laser for the type-I intermittency. Parameter values: b ¼ 0:5, j = 5000,
a ¼ 0:005; c ¼ 0:85; a ¼ 0:8, K ¼ 2:902666.
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Fig. 8. First-return map to a Poincaré section for model (2). Same parameter values as in Fig. 7.
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regimes with periodic windows. For K ¼ 2:9027, a quasi-periodic regime associated with the period-3 window is
observed. a type-I intermittency is observed but there is no variable of system (2) which presents obvious characteristics
of an intermittent behavior (Fig. 7).

The ‘‘period-3 orbit’’ is evidenced by the mostly visited structure in the first-return map to the Poincaré section
defined by _x1 ¼ 0 and €x1 > 0 (Fig. 8). Using the procedure previously described, laminar phases (Fig. 9a) are distin-
guished from chaotic bursts (Fig. 9b) and the distribution of laminar lengths is computed. The typical distribution
(one peak for short lengths and one peak for long lengths) is recovered as expected (see Fig. 10). Thus, although it
is not possible to identify the tangent bifurcation always associated with a type-I intermittency, some of its character-
istics are still identified.
Fig. 9. Structure associated with the laminar phases (a) and the chaotic bursts (b). Same parameter values as for Fig. 7. (a) Pixels pij for
laminar phases. (b) Pixels �pij for chaotic bursts.
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Fig. 10. Distribution of laminar lengths. Same parameter values as for Fig. 7.
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4. Conclusion

Using two different laser systems, two examples of intermittencies on tori have been investigated. Although the tan-
gent bifurcation cannot be identified, we showed that return maps to a Poincaré section can still be used to identify the
type of intermittent behaviors on tori. These results should help to focus attention to intermittencies on tori which are
very few (or never) reported in the literature.
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