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[...]
23. The Equations of Motion of the Experimental System can easily

be written down using Figure 14.
In the equilibrium position of the small pendulum (under the angle Ψ0 rel-

ative to the vertical) we have

0 = g S sinΨ0 + c(T20 − T10 − T30) .

Fig. 14.

Here gS is the static momentum of the pendulums body (with drum and
weights), c is the radius of the driving drum, T10, T20, T30 are the tensions of the
fibers. If one denotes by J the moment of inertia of the mass of the pendulum
relative to the axis of rotation, then in the case of motion under the angle Ψ,
the “delaying momentum” [Verzgerungsmoment] is

−J
d2Ψ

dt2
= gS sinΨ + c(T2 − T1 − T3) .
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If f1, f2, f3 are the constants of the three springs, one has

T1 − T10 = f1[ξ − c(Ψ−Ψ0)] ,
T2 − T20 = f2c(Ψ−Ψ0) ,
T3 − T0 = −f3c(Ψ−Ψ0) .

From this, one obtains

d2Ψ

dt2
+

gS

J
(sinΨ− sinΨ0) +

c2

J
(f1 + f2 + f3)(Ψ−Ψ0) =

cf1

J
· ξ

as the equations of motion of the pendulum, if in addition one takes into regard
the law under which the forcing motion ξ takes place.

Given the relatively large mass of the pendulum B, one can neglect the back-
action exerted by S on B, and is allowed to assume that ξ is the changing in
time, independently of the motion of the small experimental pendulum.

The law governing the forced motion with a very good approximation has
the form ξ = a sinωt, where a is a constant that is given by the respective
maximal excursion of pendulum B.

Introducing
x = L(ΨΨ0)

and
x

L
cosΨ0 −

x2

2L2
sinΨ0 −

x3

6L3
cosΨ0

in place of sinΨ sinΨ0, one obtains the law of motion in the form

d2x

dt2
+

[

gS

L
cosΨ0 +

c2

J
(f1 + f2 + f3)

]

x

−

1

2L

gS

J
sinΨ0 · x

2
−

1

6L2

gS

J
cosΨ0 · x

3 =
cf1L

J
a sinωt

or
ẍ+ αx− βx2

− γx3 = k sinωt ,

whereby


































α =
gS

J
cosΨ0 +

c2

K
(f1 + f2 + f3) ,

β = 1

2L
gS
J

sinΨ0 ,

γ = 1

6L2

gS
J

cosΨ0 ,

k = cf1L
J

a .

The coefficient of α is easy to determine experimentally by ones letting the
system perform very small proper vibrations and obtaining the duration of one
period.

If one removes all threads from the drum, then one gets Ψ0 = 0, and from the
derived α one obtains the value gS

J
. When one then restores the connections

with the threads, to observe small eigen vibrations (k = 0), one obtains the

value c2

J
(f1 + f2 + f3). The values β, γ, are easy to obtain by calculation.

The value x = s is to be observed on the reading scale of the small pendulum
to calculate k. In most cases it suffices to assume k = αs. Then the value k

α



3

from Eq. (69) is nothing else but the static excursion on the reading scale that
corresponds to the maximal value of ξ.

To measure the tensions of the springs, the weights and the moments of
inertia proved unnecessary. All that needed to be determined was the vibra-
tion numbers of the experimental pendulum valid at very small excursions, and
this — first inside the system when it is isolated; then the vibration numbers
of the forcing pendulum at the excursions used; then the static excursions of
the experimental pendulum corresponding to the respective maximal ξ, and the
dynamical excursions in the state of oscillation. The excursions of the experi-
mental pendulum are indicated in the state of oscillation. The excursions of the
experimental pendulum are indicated in millimeters, measured along a circular
scale of radius 170 mm.

From the series of experiments done, here only two are to be highlighted.
[...]

IV. Influence of the Damping

26. The experiments showed that even a small damping has a visible influence
on the magnitude of the excursion, whereas in a quantitative respect, a weak
damping does not make itself felt. The task is now to make this state of affairs
amenable to quantitative calculation.

That in this case at least the calculational amount of work would be markedly
increased, was to be expected a priori. Therefore, here only the case of the forced
symmetric pseudoharmonic vibration is to be treated; its equation of motion is

d2x

dt2
+ χ

dx

dt
+ αx− γx3 = k sinωt . (1)

We here again at first look in passing at the equation of the damped harmonic
vibration,

ẍ+ χẋ+ αx = k sinωt (2)

and try to solve it in the same way as in the case of the undamped vibration,
by means of successive approximation.

[...]
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An experimental confirmation of the results of the calculation presented in
Fig. 17 would be extraordinarily desirable. It can be obtained by means of
larger pendulum-devices which enable a recording of vibration diagrams; or
through measurements made on electromagnetic vibration circuits. In the case
of the latter method, special attention would need to be placed on the excitation
corresponding with maximum possible exactness to the form k sinωt, so that
the experimental results can be compared directly with our calculated results.
The conditions of [ou]r time unfortunately did not allow me to follow up on the
one or the other way further on.

Fig. 17.


