Topological synchronization of Rössler systems

From the nonlinear dynamical systems theory to observational chaos, T. Caby, M. Gianfelice

09/09/2023

From the nonlinear dynamical systems the Topological synchronization of Rössler sy: 09/09/2023 1/16

Topological synchronization for discrete systems

• Consider the master/slave system

$$\begin{cases} x_{n+1} = T_1(x_n) \\ y_{n+1} = (1-k)T_2(y_n) + kT_1(x_n), \end{cases}$$
(1)

where $k \in [0, 1]$, T_1 and T_2 are two maps of the interval [-1, 1] into itself.

- As k → 1, the dynamics of the slave gets closer to that of the master, and we can show weak convergence of the empirical measures.
- How do the geometric structure of the slave's attractor approach that of the master ?

Fractal dimensions

- Let ν be a probability measure supported in \mathbb{R}^n .
- We define the local dimension of u at a point $x \in supp(
 u)$ as

$$d_{\nu}(x) = \lim_{r \to 0} \frac{\log \nu(B_r(x))}{\log r}$$

 \bullet We define the generalized dimension of ν as :

$$D_{q}(\nu) := \begin{cases} \frac{1}{q-1} \lim_{r \downarrow 0} \frac{\log \int_{\Sigma} \nu(dx) \nu^{q-1} \left(B_{r}^{(d)}(x) \right)}{\log r} & q \neq 1 \\ \lim_{r \downarrow 0} \frac{\int_{\Sigma} \nu(dx) \log \nu \left(B_{r}^{(d)}(x) \right)}{\log r} & q = 1 \end{cases}$$
(2)

3/16

The Rössler system

• Let us consider the system :

$$X = f_c(X) \tag{3}$$

where $X = (x, y, z) \in \mathbb{R}^3$ and

$$f_{c}(X) := \begin{pmatrix} -y - z \\ x + ay \\ b + z(x - c) \end{pmatrix}, a = b = 0.1, c > 0$$
(4)

From the nonlinear dynamical systems the Topological synchronization of Rössler systems

The Rössler attractor \mathscr{A}

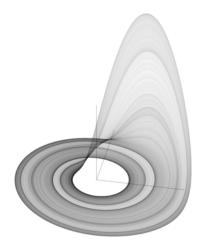


Figure – Attractor of the Rössler flow of parameters a = b = 0.1, c = 18.

(a)

э

Master/slave coupling of Rössler systems

Let us consider the master/slave system, for c_1, c_2 that generate chaotic dynamics and $k \ge 0$:

$$\begin{cases} \dot{X}_{1} = f_{c_{1}}(X_{1}) \\ \dot{X}_{2} = f_{c_{2}}(X_{2}) + k(X_{1} - X_{2}) \end{cases}$$
(5)

Theorem (CG23)

1) For $|c_1 - c_2|$ small enough, $X_1(0)$ and $X_2(0)$ close enough to the equilibrium point, the trajectories of the slave converge to those of the master as $k \to \infty$.

2) In that case, the empirical marginal measures of the two subsystems converge weakly as $k \to \infty$.

Is it enough to ensure convergence of the D_q spectrum?

Suspension flow over a Poincaré surface $\boldsymbol{\Sigma}$

Let

$$\Sigma := \{ (x, y, z) \in \mathbb{R}^3 : x = 0, \dot{x} > 0 \}.$$
(6)

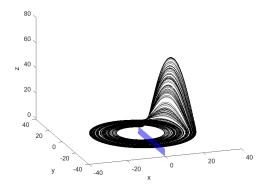


Figure – \mathscr{A} and its Poincaré section Σ .

From the nonlinear dynamical systems the Topological synchronization of Rössler systems the system of Rössler system of Rössler system of Rössler systems the system of Rössler system of Rössler system of Rössler systems the system of Rössler syst

Construction of the suspension flow and its physical measure

- Return map $R: \Sigma \circlearrowleft$ admitting a physical measure μ_R
- Roof function \mathfrak{t} : a $C^1(\Sigma, \mathbb{R}_+)$ μ_R -integrable function.

•
$$\Sigma_{\mathfrak{t}} = \{(x,t): 0 \leq t \leq \mathfrak{t}(x), x \in \Sigma\}/((x,\mathfrak{t}(x)) \sim (R(x), 0)).$$

- Consider the semi-flow S_t on Σ_t induced by the time translation $(x, s) \rightarrow (x, t + s)$.
- Its physical measure μ_S has density $\frac{1_{[0,t]}}{\mu_R[t]}$ w.r.t. $\mu_R \otimes \lambda^{(1)}$.
- Suppose the flow X_t is diffeomophically conjugated to S_t, i.e. ∃ a diffeomorphism Θ such that Θ ∘ X_t = S_t ∘ Θ. Its physical measure is then

$$\mu = \Theta * \mu_{\mathcal{S}}.$$

Main Theorem

Theorem (C., Gianfelice, 2023)

Under the previous hypothesis, if the dimensions associated with μ_R are well-defined, then :

1) For all q \neq 1, if D_q (μ_R) is well defined, then

$$D_q(\mu) = D_q(\mu_R) + 1.$$
 (7)

2) For all $x \in supp(\mu)$,

$$d_{\mu}(x) = d_{\mu_{R}}(\pi \circ \Theta(x)) + 1, \qquad (8)$$

where π denotes the projection on the first component. 3) If μ_R is exact-dimensional (i.e. its local dimensions are constant a.e.), then

$$D_1(\mu) = D_1(\mu_R) + 1.$$
 (9)

The Rössler attractor \mathscr{A}

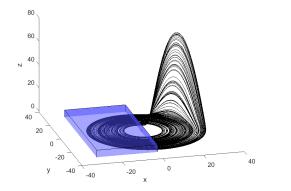


Figure – Attractor of the Rössler flow of parameters a = b = 0.1, c = 18.

∃ >

47 ▶

The return map

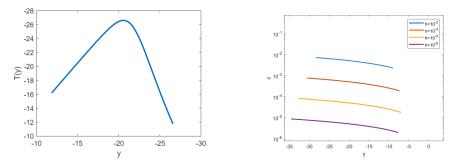


Figure – Left : Graphical representation of the unimodal map T, associated with the Rössler flow of parameters a = b = 0.1, c = 18. Right : 1-D cross-section of the attractor with the Poincaré section Σ for different discretizations h.

09/09/2023

11/16

Dynamics of unimodal maps

- There are essentially two possible types of limit sets for the dynamics of the unimodal map *T* :
 - 1- a periodic cycle
 - 2- a finite union of intervals

Theorem (Keller 90)

In the second case,

- **1** μ_T is absolutely continuous with respect to Lebesgue.
- 2) Its density ρ is bounded away from 0 on the support of μ_T .
- **9** It admits singularities distributed along the orbit of the critical point.

4 A 1 1 4

Generalized dimensions for unimodal maps

Theorem (C., Gianfelice, 2023)

Let μ_T be the physical measure of a unimodal map T and suppose $d\mu_T = \rho dx$. Denoting

 $\alpha := \inf\{0 < s < 1, \rho \text{ has a singularity of order } s\},\$

we have :

$$D_{q}(\mu_{T}) = \begin{cases} 1 \text{ if } q < -1/\alpha, \\ \frac{q(\alpha+1)}{q-1} \text{ otherwise.} \end{cases}$$
(10)

Generalized dimensions of the Rössler system

Denoting $\hat{\mu}$ the empirical measure of the Rössler system, we have :

$$D_q(\hat{\mu}) = \begin{cases} 2 \text{ if } q < -1/\alpha, \\ 1 + \frac{q(\alpha+1)}{q-1} \text{ otherwise }. \end{cases}$$
(11)

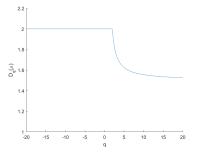


Figure – D_q spectrum of the Rössler system, according to formula (11).

14/16

Comments and conclusions

- Weak convergence of the measures is not enough to have convergence of the D_q spectrum.
- Numerical estimates of D_q the spectrum are subject to important numerical errors. In the case of the Rössler system, these estimates should yield trivial results.
- Our results apply to other flows, like the Lorenz 63', but less is known on the generalized dimensions of its return map.

Merci !

イロト イヨト イヨト イヨト

Ξ.