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Abstract

This paper investigates nonlinear wave–wave interactions in a system that describes a modified decay instability and consists
of three Langmuir and one ion-sound waves. As a means to establish that the underlying dynamics exists in a 3D space and
that it is of the Lorenz-type, both continuous and discrete-time multivariable global models were obtained from data. These
data were obtained from a 10D dynamical system that describes the modified decay instability obtained from Zakharov’s
equations which characterise Langmuir turbulence. This 10D model is equivariant under a continuous rotation symmetry and
a discrete order-2 rotation symmetry. When the continuous rotation symmetry is modded out, that is, when the dynamics are
represented with the continuous rotation symmetry removed under a local diffeomorphism, it is shown that a 3D system may
describe the underlying dynamics. For certain parameter values, the models, obtained using global modelling techniques from
three time series from the 10D dynamics with the continuous rotation symmetry modded out, generate attractors which are
topologically equivalent. These models can be simulated easily and, due to their simplicity, are amenable for analysis of the
original dynamics after symmetries have been modded out. Moreover, it is shown that all of these attractors are topologically
equivalent to an attractor generated by the well-known Lorenz system.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Parametric processes and nonlinear interaction between waves play a basic role near the onset of numerous
plasma instabilities. Due to its relative simplicity, richness of nonlinear regimes and applications to both space and
laboratory plasmas[1], Langmuir turbulence provides an attractive framework for studies of parametric instabilities.
Furthermore, there are some observational evidences for the occurrence of such parametric instabilities involving
only a few Langmuir waves, e.g. in the solar wind[2–5]. These may arise when the linear instability growth rate is
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relatively small, and when non-resonant and secondarily excited waves are sufficiently damped. Finding appropriate
descriptions of the involved dynamics and developing relevant data analysis techniques are important problems that
are not quite solved.

Since the underlying dynamics is characterised by a low-dimensional chaotic attractor, the nonlinear dynamical
system theory provides rather powerful techniques to describe the dynamical properties of such instability. A
few of them like the correlation dimension and Lyapunov exponents have already been used[6]. These geometrical
invariants confirm the low-dimensionality of the dynamics but do not reveal much about the mechanisms responsible
for the structure of the associated attractor. Typically, chaotic behaviour results from stretching and folding processes.
Stretching ensures the sensitivity to initial conditions and boundedness of the attractor requires folding. In the most
favourable cases, both may be described using a branched manifold that synthetises the topological properties of
the unstable periodic orbits[7]. These periodic orbits are the skeleton of the chaotic attractor. Indeed, the chaotic
trajectory evolves among these orbits. The key point is that investigating the relative organisation of the low-periodic
orbits is sufficient to identify most of topological properties of the chaotic trajectory. Moreover, since only the low
periodic orbits are taken into account, such analysis is more robust against noise contamination than techniques
based on geometrical considerations.

Another important task when one is dealing with experimental data is to obtain a set of equations that capture the
underlying dynamics. The obtained model may be built using delay coordinates[8] or derivative coordinates[9].
In the former case, the model is discrete in time whilst the latter is continuous in time. The equations are therefore
discrete maps or ordinary differential equations. In both cases, iterating or integrating the global model produces
“synthetic data” on a chaotic attractor that is, if the models are dynamically valid, topologically equivalent to the
attractor reconstructed from the experimental data. Therefore the obtained models are validated using topological
analysis[10]. Both modelling techniques will be here illustrated.

In this paper, we shall perform a topological analysis and global modelling of the system of interacting electrostatic
waves considered in[6,11], which involves Langmuir and ion-sound modes. This system is the simplest which,
depending on the parameters, can describe two basic instabilites, namely decay and modified decay. This will
provide an example of how these modelling techniques may be used to characterise such dynamics.

In particular, we shall investigate the consequences of symmetry, which is a quite generic a property for this type
of systems. When a dynamical system exhibits symmetry properties, it is useful to modd them out in order to perform
a more convenient dynamical analysis. That is, the data are transformed to yield a representation of the dynamics
without any residual symmetry but that is locally diffeomorphically equivalent to the original system. First, it is
shown[12,13] that the dynamical analysis is significantly simplified and, second, that the physical processes are
invariant under these symmetry properties. A dynamical system equivariant under symmetry properties may be
understood as the cover of an image system which provides a representation without any residual symmetry[14].
The image system is locally equivalent to the cover. In fact, there is a singular set where the correspondence between
the image system and the cover is not defined. This singular set allows to modd out the symmetry properties. In this
paper, we will establish that the dynamics underlying the 10D model for the nonlinear wave–wave interaction in a
system consisting of three Langmuir and one ion-sound waves[6] is of the Lorenz type[15] when the continuous
rotation symmetry is modded out.

The subsequent part of this paper is organised as follows. The 10D model is introduced inSection 2. In order to
establish the analogy between the 10D model and the Lorenz system, we take the following steps. First the procedure
for modding out the continuous rotation symmetry without destroying the discrete order-2 rotation symmetry is
explained. A simplified embedding of the chaotic attractor is thus obtained. Second the topological analysis of
this reduced dynamics is performed in a 3D space and in the space associated with the image system which has
no residual symmetry. Third, a 3D (multivariable) nonlinear auto-regressive moving average (NARMA) model
is obtained for this dynamics. Fourth, the NARMA model is validated using a topological analysis of the image
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system. Similar results are obtained with a continuous-time model. Fifth, a topological comparison between the
reduced dynamics reproduced by the 3D global models and the 3D Lorenz system is discussed. Each of these steps
is described in some detail in the subsections ofSection 3. Section 4gives the conclusion.

2. The model

Langmuir turbulence is accurately described by Zakharov’s equations[16]

∇ · (i∂t +∆+ iν̃E) = ∇ · nE, (∂2
t + 2ν̃S∂t −∆)n = ∆|E|2, (1)

whereE is the electric field averaged over the plasma frequencyωp, n the quasi-neutral density fluctuations andν
represents linear (Landau) damping and growth rates. Similar equations exist in the presence of a weak magnetic
field [17]. These equations display a very rich variety of solutions. In this paper, the case considered in[6,11] of
a 1D spectrum truncated to four waves is investigated. Such a model is the simplest which allows for two kinds
of parametric instabilities of basic importance for Langmuir turbulence: decay or modified decay instabilities. The
model is obtained from Zakharov equations by taking the following ansatz:

E =
3∑
j=1

aj(t)ei(kjx−ωjt) + c.c., n = b(t)ei(κx−Ωt) + c.c. (2)

with ω1 > ω2 > ω3 > 0,ωj = ω(kj), and the resonance conditions

(Ω+ ω2 − ω1, κ + k2 − k1) = (∆,0), (Ω+ ω3 − ω2, κ + k3 − k2) = (δ,0) (3)

with δ, ∆ 	 ωi (later on we shall take∆ = δ = 0). Under this hypothesis, the first Zhakharov equation for
Langmuir waves yields (using a convenient normalisation):

ȧ1 = −ν1a1 + a2b e−i�t, ȧ2 = −ν2a2 − a1b ei�t + a3b e−i�t, ȧ3 = −ν3a3 − a2b
∗ eiδt, (4)

while the second-order equation for the ion-sound wave can be written as

ḃ = −2ν0b+ 2i(b− c), ċ = −ν0b− a1a
∗
2 e−i�t − a2a

∗
3 e−iδt . (5)

In order to simplify the notation in the subsequent part of this paper, we will designate modeb by a4 and modec by
a5. Depending on which mode is excited, the system(4) and (5)describes either a cascade of two decay instabilities
as L1 → L2 + S (L standing for Langmuir and S for ion-sound) and L2 → L3 + S or modified decay instability
as L2 + L2 → L1 + L3. The second-order equation for the ion-sound should be maintained since modified decay
instability has a linear growth rate of the order ofΩ [18].

When∆ = δ = 0, the system(4) and (5)is a nonlinear dynamical system in

C
5(ak) = R

10(xk, yk) with k = 1,2, . . . ,5

which is dissipative when the trace of its Jacobian matrix−2(2ν0 + ν1 + ν2 + ν3) is negative. This is a requirement
for instability saturation. These equations are equivariant under the two parameter group of rotations generated by

Gθ1,θ2 :




a1

a2

a3

a4

a5




�→




a1 eiθ1

a2 eiθ2

a3 ei(2θ2−θ1)

a4 ei(θ1−θ2)

a5 ei(θ1−θ2)




(6)
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Fig. 1. Embedding dimension of the chaotic attractor generated by the 10D system. The dimension is computed by using an adapted false nearest
neighbor method. In this method, the ordinates saturate when the embedding dimension is large enough. IndexE1(d) measures the relative
change in the average distance between two neighbor points inR

d and their respective images inRd+1 when the dimension is increased fromd
to d+1. In order to do that, the phase space is reconstructed from thex2 variable using the delay coordinates with a delayτ = 5.0 s (ν1 = 0.050,
ν2 = −0.0345,ν3 = 0.03 andν4 = 0.05).

which defines a continuous rotation symmetry. Consequently, when using polar coordinatesak = uk eiφk (k =
1, . . . ,5), phases appear only as linear combinationsΦ = φ4 + φ2 − φ1 − �t, Ψ = φ4 + φ3 − φ2 − δt and
Θ = φ4 − φ5. These phase differences represent mismatches in the resonance conditions(3) due to nonlinear
interactions. The 10D system(4) and (5)may thus be reduced to an autonomous system lying in a phase spaceR

8

[6]. Nevertheless, such an approach modds out the continuous rotation symmetry, as well as the discrete order-2
symmetry. Indeed, the 10D system is equivariant under the order-2 discrete symmetry defined by the 5×5Γ -matrix
such as




a1

a2

a3

a4

a5




�→




1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1







a1

a2

a3

a4

a5




(7)

acting on the complex modesai. This is an order-2 symmetry sinceΓ 2 = I, whereI is the identity matrix. MapΓ
then defines a discrete order-2 symmetry which is a rotationR(π) since some of the coordinates of the phase space
C

5(ak) are left invariant. It is therefore more convenient to keep the full system.
Although the phase space is 10D, the dynamics settles down onto a manifold which may be embedded in a space

with a smaller dimension. Suchembedding dimensionis estimated using the false nearest neighbors technique[19].
A modified version of this technique is used here[20]. In fact the dynamics may be embedded within a 7D phase
space (Fig. 1) when all symmetry properties are preserved.

A reasonable range for parameter values is 10−3 ≤ νi ≤ 10−1 according to the normalisation used, since one
must have|νi| 	 ωi. Moreover, the growth rate shall be strong enough to generate nonlinear coherent behaviour, but
dissipation should quickly balance the energy input in order to prevent the formation of wideband spectra formed
by a cascade of secondary instabilities. As a further restriction on the parameter range, it is worth noting that when
ν1 − ν3 → 0+, the fixed point of the system is ejected to infinity and the approximation used for this model is no
longer valid.
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3. Dynamical analysis of the underlying dynamics

This section presents the procedure to modd out the continuous rotation symmetry from the original dynamics but
preserving the order-2 discrete rotation symmetry. This order-2 rotation symmetry belongs to the symmetry group
of the continuous rotation symmetry. To the best of our knowledge, it is not possible to modd out the continuous
rotation in preserving the discrete one using the standard analytical procedure and this has to be done numerically
as detailed below. Preserving the discrete rotation is particularly important because when the discrete rotation is
modded out too, the trajectory (see Fig. 7 in[6]) is not differentiable at some points of the phase space. This
becomes a problem when a global model is attempted from such reduced dynamics. Indeed, it is not possible to
find a global model for this representation of the dynamics. Contrary to this, when the discrete order-2 rotation
symmetry is preserved, it is possible to obtain a 3D global model using a NARMA technique or continuous-time
approach as detailed in this section. The dynamics generated by these global models is topologically equivalent to
the 3D embedding obtained when the continuous rotation symmetry is modded out. As it will be discussed such
dynamics are of the Lorenz-type. In particular, the reduced dynamics, the global models and the Lorenz system
have the same image system without any residual symmetry. A schematic diagram of all the descriptions used in
the subsequent part of this paper is shown inFig. 2.

3.1. Modding out the continuous rotation

Let us investigate the modified decay investigated in[6], that is, for which the unstable mode (here mode L2)
generates its Stokes and anti-Stokes satellites (here modes L1 and L3). In our notation we haveν2 < 0 andν0,
ν1, andν3 > 0. The continuous rotation symmetry as well as the order-2 discrete symmetry may be identified in
plane projections of the chaotic attractor generated by the 10D system(4) and (5)(Fig. 3). Each plane projection
corresponds to a modeai. The continuous rotation symmetry is organised around an axis which is transverse to
each plane (Fig. 3) and crosses these planes at the origin. Depending on the pulsation of the modes, the rotation can
become faster or slower. The modes may be ordered asa1 (fastest),a2, a4, a5 anda3 (slowest). Among these five

Fig. 2. Schematic diagram for the relationships between the different representation of the dynamics. From the 10D model, a 3D embedding is
obtained when the continuous rotation symmetry is modded out. From this embedding, two global models are obtained. The 3D embedding,
the global models and the Lorenz system (R = 198, σ = 10, b = 8/3) are topologically equivalent. When the discrete rotationR(π) is also
modded out from these three representations, the three image systems continue to be topologically equivalent.
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Fig. 3. Plane projections of the chaotic attractor generated by the 10D system(4) and (5). The continuous rotation symmetry is easily identified (ν1 = 0.050,ν2 = −0.0345,ν3 = 0.03
andν4 = 0.05).
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Fig. 4. Plane projections of the chaotic attractor generated by the 10D system(4) and (5)from initial conditions changed under the action of the
Γ -matrix. Modea1 (a) is unchanged (to compare withFig. 3a) while modea2 is mapped to its opposite (to compare withFig. 3b) (ν1 = 0.050,
ν2 = −0.0345,ν3 = 0.03 andν4 = 0.05).

modes, only two of thema1 anda3 do not present additional oscillations around the rotation axis. Indeed, modes
a1 anda3 (Fig. 3a and c) do not alternate from one side to the other of the continuous rotation axis.

These additional alternances induce the existence of the order-2 discrete rotation symmetry. Indeed, modea1

exhibits always a large amplitude oscillation followed by a smaller amplitude oscillation (Fig. 3a). These alternance
is strongly related to the alternance of oscillations of modea2 (for instance) from one side to the other of the rotation
axis (Fig. 3b). Moreover, when the initial conditions of modesa2, a3 anda5 are changed to their opposite, a second
attractor, symmetric from the first one under the action of theΓ -matrix, is thus obtained. Two easily distinguishable
attractors therefore coexist in the phase space (Fig. 4a and b). As expected, modesa1 anda3 are invariant under
the action of theΓ -matrix while the three others are mapped to their opposite with respect to the rotation axis. The
key point is that it is possible to map modesa2, a3 anda5 to their opposite while modesa1 anda2 are unchanged.
This clearly indicates that two different attractors are coexisting in the phase spaceR

10(a1, a2, a3, a4, a5). Such a
feature is a strong signature of an order-2 rotation symmetry. Consequently, the alternance of the trajectory from
one side to the other of the rotation axis is a signature of the second symmetry which is an order-2 discrete rotation
symmetry belonging to the symmetry group of the continuous rotation symmetry. This symmetry is related to the
Γ -matrix of relation(7).

Note that the order-2 rotation symmetry is not anymore active when the standard analytical procedure is applied
sinceΓ is one of the rotation symmetry group operations. Since, up-to-now, no analytical method has been identified
for doing that, a numerical procedure will be introduced as follows. The purpose is now to modd out only the
continuous rotation symmetry and to preserve the discrete rotation symmetry. Usually, when a continuous rotation
symmetry acting on complex modesak is modded out, the modulus of each modeak is computed according to

ρk = ±
√

|ak|2. (8)

Unfortunately, this is not only the continuous rotation symmetry which is modded out when such a coordinate
transformation is applied. Indeed, when the modulus of modeak are computed, the discrete order-2 symmetry
is also modded out. That is the reason for which the trajectory presents some point where it is not differentiable
anymore (Fig. 7 in[6]). In order to preserve the discrete symmetry it is necessary to keep the phase, represented by
the sign before the square root ofEq. (8). Thus the sign is changed each time the trajectory crosses the neighborhood
of the rotation axis, that is the neighborhood of the trivial fixed point of the system located at the origin of the phase
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Fig. 5. Estimation of the embedding dimension from the variableρ3. A 3D space is clearly sufficient to describe the dynamics when the continuous
rotation is removed.

spaceR
10. A phase portrait which is everywhere differentiable is thus obtained (Fig. 6a). This is done for the

three modesρ2, ρ4 andρ5 which are then designated byρ̃2, ρ̃4 andρ̃5. When the continuous rotation symmetry is
modded out according toEq. (8), the phase space is obviously reduced to a 5D phase spaceR

5. Nevertheless, the
phase portrait (Fig. 6a) and its first-return map which is unimodal with a differentiable maximum (Fig. 6b) strongly
suggest that the dynamics could be embedded within a 3D phase space. This is easily checked by estimating the
embedding dimension using the variableρ3 (Fig. 5).

The description of the dynamics can therefore be done in a 3D sub-space of the spaceR
5(ρ1, ρ̃2, ρ3, ρ̃4, ρ̃5).

Note that in this space, theΓ -matrix is still active as required. According to theΓ -matrix, there are two co-existing
attractors in the phase spaceR

5(ρ1, ρ̃2, ρ3, ρ̃4, ρ̃5), one is the symmetric of the other under the action of the
Γ -matrix. In fact, two simultaneous period-doubling cascades are observed after a pitchfork bifurcation as observed
for the simple Burke and Shaw system[12], and the Lorenz system. Note that when the 8D model is obtained[6],
since all symmetries are modded out, the pitchfork bifurcation cannot be observed anymore and is replaced with a
period-doubling bifurcation[21]. Preserving the discrete rotation allows to preserve the pitchfork bifurcation.

The chaotic attractor generated when only the continuous rotation is modded out is very similar to the chaotic
attractor generated by the Lorenz system for large values ofR (seeSection 3.5). For instance, for the parameter
values used inFig. 6, the first-return map to a Poincaré section is a unimodal map with a differentiable maximum.
Such a map belongs to the universal class associated with a period-doubling cascade[22,23] and, consequently,
corresponds to the type of attractor observed for the Lorenz system for large values ofR [24]. If all parameters are
kept constant at the values used forFig. 6with the exception ofν2, an attractor merging crisis is observed for slightly
smaller values ofν2 and the attractor becomes globally invariant under theΓ -matrix (Fig. 7). A similar scenario is
also observed on the Lorenz system for large values ofR (seeSection 3.5) and the Burke and Shaw system[13].

3.2. Topological analysis of the reduced dynamics

Since the attractor is now symmetric under an order-2 rotation symmetry, it is convenient to investigate its topology
using the image system[14]. Indeed, a representation of the chaotic attractor without any residual symmetry may
be obtained by using a 2�→ 1 mapping. Since the attractor may be embedded within a 3D space, three coordinates
are sufficient. Since the discrete symmetry is a rotation, among the three retained coordinates, a single one must
be invariant under the rotation symmetry. Consequently, modulus of modesa1 or a3 which are invariant under the
order-2 rotation symmetry must be retained. Let us arbitrarily choose the modulus of modea3. Among the three
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Fig. 6. Chaotic behaviour generated by the 10D system(4) and (5). The first-return map is a unimodal map with a differentiable maximum
(ν1 = 0.050,ν2 = −0.0345,ν3 = 0.03 andν4 = 0.05).

remaining modes, the modulus ofa2 anda4 are chosen. Thus, the 3D space in which the topology of the attractor
will be investigated is spanned by the coordinates(ρ̃2, ρ̃4, ρ3), whereρ̃2 andρ̃4 designate the modulus of modea2

anda4 for which the sign is varied in order to preserve the discrete rotation symmetry as discussed above. In the
spaceR3(ρ̃2, ρ̃4, ρ3), the rotation is around the axisOρ3.

In that case, the image system is constructed with a nonlinear coordinate transformation(ρ̃2, ρ̃4, ρ3) �→ (u, v,w)

in which the coordinates(u, v,w) are invariant under the rotation symmetryRρ3(π). The elementary polynomials
in (ρ̃2, ρ̃4, ρ3) of degree up to two, which are invariant underRρ3(π), areρ̃2

2, ρ̃2
4, ρ̃2ρ̃4,ρ3 andρ2

3. The following
coordinate transformation is convenient[14]:

Ψ ≡




u = R(ρ̃2 + iρ̃4)
2 = ρ̃2

2 − ρ̃2
4,

v = I(ρ̃2 + iρ̃4)
2 = 2ρ̃2ρ̃4,

w = ρ3.

(9)

Fig. 7. Chaotic attractor globally invariant under the discrete rotation symmetry after the attractor merging crisis (ν2 = −0.0343).
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Fig. 8. Image of the chaotic attractor without any residual symmetry (ν2 = −0.0343).

When this map is directly applied to the trajectory embedded within the phase spaceR
3(ρ̃2, ρ̃4, ρ3), an image

attractor without any residual symmetry (Fig. 8) is obtained. This image system is topologically equivalent to the
attractor generated by the 8D model investigated in[6] but, it has the great advantage to be everywhere differentiable.

Let us start with one of the co-existing attractors in the phase space before the attractor merging crisis, that is,
for ν2 > −0.0343. Since the first-return map is unimodal with a differentiable maximum, we should be able to
synthetise the relative organisation of the periodic orbits embedded within the attractor by a branched manifold,
a so-called template. A template is a knot-holder which synthetises all topological properties of unstable periodic
orbits embedded within the attractor[7]. A first step may be to compute a first-return map to a Poincaré section as
shown inFig. 6b. In the present case, the first-return map is constituted by two monotonic branches, one increasing
and one decreasing, split by a critical point C. An increasing (decreasing) branch is always associated with a stripe
with an even (odd) number of half-turns. The template has therefore two stripes. The template is a Horseshoe
template with a global torsion of a full turn (Fig. 9). In fact this template is equivalent to the one which characterises
the attractor generated by the Lorenz system forR = 200 (σ = 10 andb = 8/3). The template is then checked by
computing the linking numbers from the extracted periodic orbits (see[10] for details). The fact that the topology
of the attractor may be described by a template is a first confirmation evidence that the dynamics may be embedded
within a 3D phase space.

Fig. 9. Template of the chaotic attractor generated by the system(4) and (5)when the continuous symmetry is modded out. It is a Horseshoe
template with a global torsion by a full-turn.
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Fig. 10. First-return map to a Poincaré section of the image attractor (ν2 = −0.0343).

When the parameterν2 is increased slightly, an attractor merging crisis is observed. The two attractors which
co-exist in the phase space touch an unstable periodic orbit and become a single chaotic attractor that remains
globally unchanged under the order-2 discrete symmetry (Fig. 7). Such a feature is also observed for the Lorenz
system and the Burke and Shaw system. This is a quite common scenario for equivariant systems[12,21].

The topological analysis is then performed as usually for systems without any symmetry properties. The first-return
map to a Poincaré section (Fig. 10) is a unimodal map with a differential maximum. As previously observed, the
template has therefore one stripe with an even number of half-turns and one stripe with an odd number of half-turns.
In fact, the template is similar to the one shown inFig. 9. The main difference is in the population of periodic
orbits. Forν2 = −0.0343, the dynamics is very close to the attractor merging crisis and, in that case, the symbolic
dynamics is complete, that is, any possible sequence of “0” and “1” is realised as a periodic orbit within the attractor.
For the symmetric attractor (ν2 = −0.0345), the symbolic dynamics is pruned and, some symbolic sequences are
realised as orbit within the attractor. The population of orbits with periodicity less than 9 is reported inTable 1for
the attractor after the attractor merging crisis.

3.3. 3D global models

One of the aims of this paper is to establish that the original dynamics, after modding out symmetries, can be
correctly embedded in a 3D space. The means by which this will be accomplished is to search for global models

Table 1
Population of orbits with periodicity less than 9 embedded within the chaotic attractor generated by the 10D model forν2 = −0.0343a

1 101111 10111
10 10111110 10110
1011 10111111 1011010
10111010 1011111 1011011
101110 1011110

a Some possible symbolic sequences are not realised as orbit embedded within the attractor; the symbolic dynamics is therefore pruned.
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obtained directly from the original data without symmetries. If such models correctly reproduce the original dynamics
and are 3D then the initial hypothesis is established. This section briefly reviews the modelling techniques used to
obtain two global models that correctly represent the original dynamics without the continuous rotation symmetry.
These models, which are very simple due to careful structure selection, commend themselves for simulation and
analysis of the original image system. The models differ in the coordinate set on which they are built. One is built
on delay coordinates and is a discrete-time model and the second is based on derivatives and is a continuous-time
model. Both are 3D.

Since it is very likely that the dynamics may be embedded within the spaceR
3(ρ̃2, ρ̃4, ρ3), the evolution of the

system may be defined by a multivariate time series involving these three coordinates. It is thus desired to obtain a
dynamical model from that multivariate time series with no prior knowledge, that will represent the original dynamics
in some sense. In the reminder of this section, the NARMA model and the continuous-time model representations
will be briefly reviewed, respectively. Such representations will be used on the multivariate time series to obtain 3D
models for the attractor when the continuous rotation symmetry is modded out.

Here it is considered that the measured multivariate time series isxk = (xk, yk, zk) (kTs), k = 0,1, . . . and where
Ts = 0.2 s is the sampling time. In many cases, the time evolution of the observed multivariate time series can be
described by NARMA model[8] of the form

xk = F/x [xk−1, . . . , ex,k−1, . . . , ex,k−10], yk = F/y [xk−1, . . . , ey,k−1, . . . , ey,k−10],

zk = F/z [xk−1, . . . , ez,k−1, . . . , ez,k−10]. (10)

Moreover, the multivariate time series is the output time series andei,k accounts for uncertainties, possible noise,
unmodelled dynamics in each time series.F/i [·] is some nonlinear function ofxk andei,k. This model representation
was chosen because it has shown to be adequate to represent, in compact form, a number of systems with chaotic
dynamics[25].

In this paper, the mapF/i [·] is a polynomial of degree/ ∈ Z
+. In order to estimate the parameters of this map,

each function inEq. (10)can be expressed in the following form:

xk = ψT
k−1θ̂ + ξk, (11)

whereξk are the identification residuals. Moreover,ψk−1 is a vector which contains output and residual terms up to
and including timek−1 andθ̂ is the estimated parameter vector obtained by minimising the following cost function
[26]:

JN(θ̂i) = 1

N

N∑
k=1

ξ2
i,k(θ̂i), i = x, y, z (12)

independently for each functionFi: Eq. (10)includes a moving average (MA) part composed of residual terms. This
is done to significantly reduce parameter bias during estimation, howeveronly the deterministic part, composed
by the terms inxk, yk andzk are used in the simulation and analysis. Because the residuals can only be calculated
after all the model parameters have been estimated,Eq. (10)is “pseudo linear-in-the-parameters” and an iterative
algorithm must be used. In fact, the extended least square algorithm can be used to successfully estimate the model
parameters in the presence of the MA part of the model, which should be used, as explained before, to reduce bias
on the parameters of the NAR part, which is the deterministic part of the model.

Parameter estimation is usually performed for a pseudo linear-in-the-parameters orthogonal model which is
closely related to(11)and which is represented as

xi,k =
np+nξ∑
j=1

gjwj,k + ξi,k, (13)
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wherenp+nξ is the number of (process plus noise) terms in the model,{gi}np+nξ
i=1 are parameters and the monomials

{wj,k}np+nξ
j=1 are orthogonal over the data records. Finally, parameters of the model inEq. (11)can be calculated

from the{gj}np+nξ
j=1 . This procedure has two major advantages, namely: (i) reduces inaccuracies due to numerical

ill-conditioning; (ii) aids in selecting the structure of the final model. This last step is known to be a critical issue in
nonlinear model building because a wrong structure does not only havenumericalconsequences but alsodynamical.
An incorrect structure does in fact induce spurious dynamics in the model.

A criterion for selecting the most important terms in the model can be devised as a by-product of the orthogonal
parameter estimation procedure. The reduction in the mean square prediction error (MSPE) due to the inclusion of
thejth term,gjwj,k, in the auxiliary model ofEq. (13)is (1/N)g2

j w̄
2
j,k. Expressing this reduction in terms of the

total MSPE yields the error reduction ratio (ERR)[26]:

[ERR]j =
g2
j w̄

2
j,k

x̄2
k

, j = 1,2, . . . , np + nξ. (14)

Hence those terms with large values of ERR are selected to form the model.
Our objective is to obtain a 3D model to show that the dynamics underlying the 10D model when the continuous

rotation symmetry is modded out may be reproduced by a 3D model (at least for certain parameter values). Using
the notation(x, y, z) = (ρ̃2, ρ̃4, ρ3) for simplification, the obtained model is

xk = 1.0680xk−1 + 3.1203yk−1zk−1 − 0.074266xk−1z
2
k−1 − 0.020243yk−1 − 8.6382xk−1y

2
k−1

− 0.1078xk−1zk−1 + 2.119yk−1z
2
k−1 − 4.7524y3

k−1 − 0.4463x2
k−1yk−1,

yk = −0.0055474xk−1 + 0.95083yk−1 − 1.242xk−1zk−1 − 1.1934yk−1zk−1 + 1.8317x3
k−1

+ 6.7074x2
k−1yk−1 + 40.117xk−1y

2
k−1 + 0.59054xk−1z

2
k−1 + 38.189y3

k−1,

zk = +0.94249zk−1 − 0.020179x2
k−1 − 2.19xk−1yk−1 − 0.61578y2

k−1 + 0.10749z2
k−1 + 0.43031x2

k−1zk−1

− 0.31945y2
k−1zk−1 − 0.52538z3

k−1 + 2.0311xk−1yk−1zk−1, (15)

wherexk, yk andzk designate the values of the variablesx, y andz at the discrete timek, respectively. In this
representation, the time scale has been normalised with respect to the sampling timeTs, that is, the instantk − 1
refers to a timeTs prior to k. The residual terms are not shown since they are not used in the simulation. They
were included, however, during parameter estimation to reduce bias. The model was obtained from a multivariate
(three) time series with 1500 observations each corresponding to the 3D embedding shown inFig. 7, that is, for
ν2 = −0.0343. Note that all the monomials retained in the NARMA model satisfy the requirement for the rotation
symmetry around thez-axis, that is, the monomialsxiyjzk are such asi + j are odd for the first two functions
definingxk andyk. In the third function,i + j is even. These monomials have been automatically selected by the
ERR structure selection, enforcing the rotation symmetry.

3.4. Topological validation of the 3D model

One may remark that the discrete-time model(15) is equivariant under a mapγ : (xk, yk, zk) �→ (−xk,−yk, zk)
defining an order-2 discrete rotation symmetryRz(π). Iterating this global model allows to obtain a chaotic attractor
(Fig. 11) which is topologically equivalent to the attractor generated by the 10D model when the continuous rotation
symmetry is modded out. The topological validation is performed for the image representation of the model attractor
obtained by applying the coordinate transformation(u, v,w) = (x2 − y2,2xy, z).

To give few elements, the first-return map to a Poincaré section for the NARMA model attractor (Fig. 12) is
very similar to the one computed for the original dynamics (Fig. 10). The population of periodic orbits embedded
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Fig. 11. Chaotic attractor obtained by iterating the identified NARMA model. This chaotic attractor is equivalent to the original one shown in
Fig. 7.

within the model attractor is the same as the one reported inTable 1. Linking numbers for couples of periodic orbits
have been computed and found in agreement with those predicted from the template shown inFig. 9. The NARMA
model reproduces therefore correctly the attractor shown inFig. 7. Once the continuous symmetry is modded out,
the underlying dynamics can therefore be embedded within a 3D phase space (at least for certain parameter values).

It has been recently shown that sometimes the bifurcation diagram may be partially reproduced from a model
estimated from a time series recorded for a single value of the parameter[27,28]. Such a feature is successfully
verified for the 3D NARMA model when the first monomial 1.068xk−1 is replaced withµxk−1. Thus, when the

Fig. 12. First-return map to a Poincaré section of the chaotic attractor generated by the NARMA model(15).



C. Letellier et al. / Physica D 179 (2003) 33–52 47

Fig. 13. Bifurcation diagram computed from the NARMA model (a) vs. the coefficientµ when the first monomial 1.0680xk−1 of system(15)
is replaced withµxk−1. The diagram associated with the continuous-time model (b) is computed vs. the parameterα1. Both models provide
the same bifurcation diagram. There is no direct correspondence betweenxk−1 andz, since the models have very different structure. Only the
dynamics may be compared.

µ-parameter is varied over the interval [1.067; 1.074], a part of the bifurcation diagram is reproduced (Fig. 13a). The
coefficientµ may only be varied over the previous interval. Whenµ < 1.067, the trajectory is ejected to infinity.
Roughly, when the parameterµ is decreased, a pitchfork bifurcation occurs and two period-1 limit cycles co-exist
in the phase space. Both are simultaneously destabilised by a period-doubling bifurcation and two simultaneous
period-doubling cascades are observed. Chaotic behaviours are then observed with the exception of periodic windows
for fewµ-parameter values. Hereafter, an attractor merging crisis is observed forµ ≈ 1.0688 and a single symmetric
attractor is observed. This is exactly the bifurcation which is observed for the 3D embedding obtained when only
the continuous rotation symmetry is modded out.

Similar results are obtained using a differential model representation. In that case, the continuous-time model has
the form of the three ordinary differential equations

ẋ = Fx(x, y, z), ẏ = Fy(x, y, z), ż = Fz(x, y, z) (16)

which are estimated independently on multivariate polynomial basis using a least-square method[9]. A simple
structure selection based on the expected symmetry properties for the phase portrait shown inFig. 7 is applied.
Thus, since an order-2 rotation around thez-axis is expected, the monomialsxiyjzk must satisfyi+ j odd for the
first two functionsFx andFy, andi + j even for the third one. Once the model is obtained, a second structure
selection is applied by hand: nine terms which do not affect the dynamics were removed. The lack of effect on
the dynamics was determined by the large variations of their values observed when the modelling parameters are
slightly changed. The model then reads as

ẋ = α1x+ α2yz+ α3x
3 + α4x

2y + α5xy2 + α6yz2,

ẏ = β1x+ β2y + β3xz+ β4yz+ β5x
3 + β6x

2y + β7xy2 + β8xz2 + β9yz2,

ż = γ1z+ γ2xy+ γ3xyz (17)

for which the coefficients are reported inTable 2. Similarly to the NARMA model, this continuous-time model
generates a chaotic attractor which is topologically equivalent to the original dynamics when the continuous rotation
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Table 2
Coefficients of the three ordinary differential equations obtained for the 3D differential model obtained when the continuous rotation symmetry
is modded out

i αi βi γi

1 0.03040 −0.00331 −0.03001
2 1.69058 −0.03728 −0.99819
3 −0.08304 −0.64343 −0.03534
4 −0.26199 −0.27072
5 −2.14262 0.66183
6 0.69238 0.59883
7 10.6746
8 1.08209
9 1.36005

is modded out. When the parameter,α1, is varied, a bifurcation diagram similar to the one obtained for the NARMA
model is computed (Fig. 13b). Both approaches thus provide similar features. The 3D character of the dynamics is
thus confirmed.

Further support for model validation comes from the Lyapunov exponents (Table 3). Indeed, the largest exponent
λ1 is in good agreement between the original 10D dynamics and the two 3D models. This shows that quantitative
dynamical characteristics such as entropy are also recovered by the models. One may also note that the Lyapunov
dimension computed from the standard Kaplan–Yorke formula agrees well for the discrete and continuous models,
respectively, 2.05 and 2.04. For the 10D system, the continuous rotation symmetry induces two vanishing exponents
which increase the dimension by two with respect to the situation where this continuous symmetry is modded out.
For instance, a dimension of 4.10 is estimated, which corresponds rather well to the dimension of the 3D models
increased by two.

3.5. Comparison with the Lorenz dynamics

When only the continuous rotation symmetry is modded out, the dynamics of the nonlinear wave–wave interactions
model is very similar compared to those generated by the Lorenz system:

ẋ = −σx+ σy, ẏ = Rx− y − xz, ż = −bz+ xy (18)

for (R, σ, b) = (198,10,8/3). The chaotic attractor thus generated is globally unchanged under the rotation sym-
metryRz(π) of the Lorenz system (Fig. 14). For the parameter values chosen, the attractor is located just after an
attractor merging crisis whenR is decreased. Such a feature already ensures that the dynamics will have certain
properties similar to those observed for the original attractor.

As for the original dynamics and the NARMA model, the image system is built for the topological analysis.
The corresponding attractor (Fig. 15) looks slightly different. This results from an orientation of the 3D embedding
in the phase spaceR3(ρ̃2, ρ̃4, ρ3) (Fig. 7) which is slightly different than the orientation of the Lorenz attractor

Table 3
First five Lyapunov exponents computed for the original 10D system and the three exponents of the 3D modelsa

λ1 λ2 λ3 λ4 λ5

10D 0.0039 1× 10−6 8 × 10−7 2 × 10−7 −0.039
3D NARMA 0.0041 −8 × 10−8 −0.0737 – –
3D continuous 0.0038 −3 × 10−7 −0.0830 – –

a Note that for the 10D model three components can be considered as zero within the numerical precision of the computation.
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Fig. 14. Chaotic attractor generated by the Lorenz system which is topologically equivalent to the dynamics generated by the 10D model when
the continuous rotation is modded out.(R, σ, b) = (198,10,8/3).

in the spaceR3(x, y, z). Nevertheless, when the first-return map to a Poincaré section is computed (Fig. 16), this
is a quite similar map which is recovered. Note that even the layered structure of the decreasing branch is also
reproduced. The population of periodic orbits embedded within the attractor is the same than the one reported
in Table 1. Moreover, the template characterising this attractor is also the template shown inFig. 9. When the
continuous rotation symmetry is properly modded out, that is, in preserving the discrete order-2 symmetry, the
original dynamics is therefore topologically equivalent to the Lorenz attractor.

The bifurcation diagram versus theR-parameter value is computed (Fig. 17) which is similar to those previously
computed (Fig. 13). This strongly suggests that the dynamics without the continuous rotation symmetry is of the
Lorenz type, at least for certain parameter values and from a topological point of view.

Fig. 15. Image attractor without any residual symmetry of the Lorenz system for(R, σ, b) = (198,10,8/3).
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Fig. 16. First-return map of the chaotic attractor generated by the image of the Lorenz system(R, σ, b) = (198,10,8/3).

Fig. 17. Bifurcation diagram of the Lorenz system vs.R for (σ, b) = (10,8/3). A pitchfork bifurcation (not shown) occurs forR = 313.8. Each
part of this diagram corresponds to one of the two wings of the Lorenz system.

4. Conclusion

Although generated by a 10D model, the dynamics underlying interacting electrostatic waves is not necessarily
too complicated. In particular, when the continuous rotation symmetry is modded out, the modified decay instability
has a dynamics which is topologically equivalent to the Lorenz dynamics. This exhibits an unexpected analogy with
a decay instability driven by a coherent pump wave which has an attractor of the Lorenz-type[29], at least for certain
parameter values. This suggests that complex behaviours as observed when the continuous rotation symmetry is kept
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may result from quite simple dynamics conjugated with more or less obvious symmetry properties. It is therefore
relevant to be able to identify the possible symmetries which may be involved in the system under study. Indeed,
this is an important step before attempting a global model from a time series since it is not possible to obtain a
global model from the data where the continuous rotation symmetry is maintained. If this is true for numerical data,
this will be reinforced for experimental data where the noise contamination is always an additional difficulty. This
reveals that using symmetry properties for investigating dynamics may be very important.

It has been shown how the identification of symmetry properties, topological analysis and global modelling
techniques may be used for investigating dynamics. All of these techniques may be used to investigate experimental
dynamics. Taking into account the symmetry properties is useful to simplify the analysis. Sometimes it is not even
possible to compare directly experimental dynamics and models because measurements naturally modd out the
symmetries. This is the case when electromagnetic fields are involved and only the intensities are measured. Global
modelling techniques can be used to obtain deterministic equations that capture the underlying dynamics. This is
particularly convenient to prove that the data used to obtain the model are deterministic rather than stochastic. When
only a small amount of data is available, it is possible to use the model to generate very long (stationary) time series
and, consequently, to be able to perform an accurate dynamical analysis, such as topological analysis.

The analogy between the 10D model and the 3D Lorenz system is only valid for certain parameter values. Since
it is known that modified decay instability behaves in a different way than the single decay instability[30–32], such
analysis remains to be extended to a broader range but there is no doubt that this is already a helpful starting point
for understanding the road from chaos to hyperchaos, that is, how a second Lyapunov exponent becomes positive. It
is believed that the procedures and results discussed in this paper are relevant preliminary steps before investigating
experimental dynamics.
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