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Deterministic nonperiodic flow {oi "chaotic” or “strange” or “tumbling” type, respectively)
was first observed, in a 8.component differential system, by E. N, Lorenz in 1963, A 3-component
abstract reaction system showing the same qualitative behavior is indicated., It consists of (1) an
ordinary 2-variable chemical oscillator and (2} an ordinary single-variable chemical hysteresis

system, According to the same dual principle,

many more analogous systems can be dovised, no

matter whether chemical, biochemical, biophysical, ecological, sociological, ecenomie, or electronic
in nature. Their dynamies are determincd by the presence of a “folded” Poincard map, Under
numerical simulation, the proposed chemical system provides an almost ideal fllustration fo the
underlying dynamical prototype, the “3-dimensional blender”. Thus, continuous Euklidean dynamics
(and with it chemical kinetics) proves to be of equal interest in studying chaos as discrete dy-

namical systems already have,

Introduction

“Chaotic”, or “lumbling” behavior as a guali-
tative behavioral mode of dynamical systems is
known since a long time. Poincaré already observed
that not only large ensembles of coupled systems (as
in statistical mechanics) may produce the phenome-
non, but that 2 strongly coupled nonlinear oscilla-
tors may already be sufficient 1. Later on, numerous
treatises on “ergodic” (and “mixing”, and “axiom
A”, and “Anosov”, respectively) flows have ap-
peared in continuous dynamies?~5, rendering the
mathematical exisience of “strange attractors”, as
the underlying limit sets have been called %, a well-
established fact. However, the historical origin
{2 coupled oscillators, which means 4 state vari-
ables) may have been the reason that in search for
mathematically simple examples, mostly a non.
Euklidean metric has been assumed (since a 2.di-
mensional torus is the natural surface for treating a
pair of oscillators). Hereby the fact that a 2-torus
an be re-embedded in Euklidean 3-space was some-
how not exploited.

An impulse toward reconsideration of Fuldidean
systems was provided by E. N. Lorens’s paper?® on
a 3-variable “non-periodic” differential system, de-
rived from a more complicated model of turbulence.
However, the mode of action of this systent, de-
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scribed by a deceptively simple set of equations,
was apparently too complicated in order to lead 1o
the formulation of & simple 3-dimensional prototype
directly,

Nonetheless, Lorenz ® 7 made an important quan-
titative ohservation concerning the amplitudes of
successive oscillations in his system: when he viewed
those amplitudes as being generated by a discrete
system, the transition function determining the lat-
ter’s behavior revealed an interesting “cap-shaped”
form (as a two-to-one mapping), Concerning the
class of chaos-generating discrete systems opened up

by this finding, a number of papers have appeared

recently® or are in the process of appearing 9712,
whereby a potential ecological application of these
equations is emphasized.

Since any continuous oscillator gives rise to a
discrete dynanical system governed by a so-called
Poincaré map 13 (which describes nothing else than
the transition law from one amplitude to the next 13,
though usually being considered only in the neigh-
borhood of a limit cycle), it is straightiorward to
suggest a veversal of Lorvenz’s procedure: to look
for further 3-variable dynamicat systems possessing
a cap-shaped difference equation as a Poincaré map.
{Some of the systems to be detected may then prove
to be of a similar practical importance as the de-
vived difference equations already have.)

The particular 3-dimensional flow to be described
below was not found in this way, however. In an
attempt at “translating” Lorenz’s original differen-
tial system into the nonmnegative domain in order
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to arrive at a possible reaction kinetic analog, the
mode of action of the anticipated analog (depicted
in Fig.8g) proved so intricate™ that a simpler
mechanism had to be looked for (possibly within
the class of chemical universal circuiis considered
earlier %), Only after such a system had heen found
did its properties suggest the above-named identity
{Lorenz map = Poincaré map)}.

A Principle for 3-dimensional Chaos
Generation

In 1930, Khaikin 1% described an electronic de-
vice which he called a “universal circuit” since it
could produce both nearly linear and typical relax-
ation oscillations on the turn of a single parameter
(with a sharp iransition point). As described in
Andronov et al. ’s well-known textbook Y%, the sys.
tem’s irajectorial flow consists of an autonomous
oscillation in 2 variables, being molded upen an
gither [- or S-shaped slow manifold*® formed by
the dynamics of a third variable.

As depicted in Fig.1, a slight modification is
sufficient to turn the device into a chaos-generating
machine: by simply introducing a different orienta-
tion of flowing on the other stable branch of the
slow manifold {with the consequence of a “reinjec-
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Fig. 1. Main trajectorial flow of a universal circuit. &) Nearly
lincar mode. b) Relaxation mede. ¢} Analogons “Soft
Watch” {aftor Salvador Dali’s synonymous painting, 1933).
d} Chaes-producing mode (see text), s.am. = slow manifold,
wd. = unstable foeus, lc. = limit cycle, the intermediate
part of slow mantfold in (b) and (d) is unstable, fst. =
“first switched trajectory”, Lnt. = “last nonswitched trajec-
tory”, rev.fl. = reversed direction of flow “downstairs”,

tion” of part of the flow after its having passed
through a twisted roundabout loop},

Since this is a very minor modification, the cir-
cuit appears to be even more “universal” than origi-
nally thought. In addition to chaos-iype oscillations
(1o be considered here), the system also can produce
coil-type3® oscillations (when the width of the
hysteresis loop is reduced) and, when used as a
morphogenetic system (under diffusion-type cou-
pling), “veined” patlerns, as evidenced by a recent
model on leaf-morphogenesis 2. The limits of the
circuit’s “universality” thus are still undetermined.
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Fig. 2. Combinatien of an Edelstein switch®» 2 with a

Turing oscillator 2 2 jn a reaction system producing chaos.

E = switching subsystem, = oscillating subsystem;

constant pools {sources and sinks) have been omitted from
the scheme as usual.

The following reaction scheme (Fig.2) consti-
tutes one possible way to realize the principle by
chemical means. It combines a 2-variable chemical
oscillator (variables a, b} with a single-variable
chemical hysteresis system (c), as prescribed by the
recipe.

The system obeys, under the usual assumptions
of wellstirredness and isothermy as well as an ap-
propriate concentration range, the following set of
rate equakions:

d=k1+lf2!?'—“ (kab-}-k;ﬂ)ﬂ/((l'l‘K) »
b=kya—Fkyb, (1)
pé=hkiatkge—kyc—kygef{et+ K},

where ¢ denotes the conceniration of substance A,
etc., “=d/dt, Fyp=ky €y, ey=constant, and K, K
are Michaelis constants. The equations thus are
non-explicit, assuming validity of a steady-state ap-
proximation of fast-reacting intermediate products®!,

A simulation result is shown in Figure 3. It may
be noted that due to the asymmetry of the slow
manifold {cf. Fig. 3b), only one of its two thresh-
olds is effective at the assumed, relatively low value
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Fig, 3. Numerical simulation of Eq. (1), using Gear's inte-
gration method for the numerical solution of stiff differential
equations 2%, a} afb-projection, b} afc-projection. ¢) Sterco-
plot, (Parallel projection; the right-hand picture is for the
left eye: ¢ is pointing out of the paper.) d) Time behavior
of a. €} Time behavior of b. ) Time behavior of ¢. Pa-
rameters assumed: %, = 37.8, k, =14, k; = 2.8, k;, = 2.3,
Bye= 2, k=1, ky = 8, kg = 184, ko = 0.0616, k;o = 100,
K =005 K =002, 1 =1/25; ay =1, by = 12, ¢, = 0.2,
Iy = 0, tond = 43.51.

of pu. (Therefore, %y could as well have been set
equal to zero, rendering the Edelstein switch a non-
reseliable, or single-Uneshold, chemical switch #3 26,)
The “reinjection principle” as postulated above is
nonetheless perfectly valid, as evidenced by the
“down-view” (Fig.3a} as well as the stereo-plot
Figure 3 ¢). Both the time behavior of the 3 vari-
ables and the apparent relatively homogeneous cov-
ering of a whole region of state space by trajectories
suggest absence of a limit eycle of low period, The

gualitative properties of the flow cannot be deduced

from simulation results alone, however,

Existence of a Chaos-generating Poincaré Map

In Fig. la, a one-dimensional Poincaré map!?
can be constructed along a radius emerging from the
unstable focus and staying within the stable mani-

fold, supposed that x is tending o zero. The same
holds true for Figure 1b. In either case, the Poin-
caré map has the form indicated in Figure 4, Ti is
identical with the Poincaré map of a simple 2-di-
mensional limit cycle oscillator.
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Fig. 4, Poincaré map of a universal circuit in the nearly
linear and the relaxation mode, respectively (see Figs. la
and b), supposed that x> 0. -+ = Poincaré radius.

The map is depicted as a function over the radius.
Any trajectory re-enters the radius (abscissa) at
the corresponding function value (ordinate), such
that identity circles are needed for the transfer.
These identity circles are convenienily replaced by
the identity map (first hisector), as indicated. Both
a monotonously repelling and a monotonously at-
tracting fixed point are found in this way, the for-
mer (at the origin} corresponding to the unsiable
focus, the latter (on the right hand side) to the
stable limit eycle. For more details, see 13,

When the same map is constructed now for the
system of Fig. 1d (with the radius pointing in a
direction either parallel 1o or away from the cliff),
the more interesting picture of Fig. 5 resulis,

The map now possesses a “cap-shaped” region,
All trajectories coming from the leflt are atiracled
by, and trapped in, the quadratic box which is
bounded by the “first reinjected” and the “last non-
reinjected” irajectory, respectively, The formation
of this box is decisive because, whenever within
such a box 2 upward moves {increases of amplitude)
followed by a decrease helow the initial point are
possible, the condifions of the Li-Yorke theorem
are fulfilled, which means that ihe presence of chaos
has been proved. Obviously, this condition is easy
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Fig. 5. Poincaré map of a universal circuit in the chaotic

mode (see Fig. 14}, supposed that g¢-> 0. b.f.r.t. = border-

line determined by first reinjected trajectory; blmt. =

borderline determined by last non-reinjected trajectory;
1, 2,3 = steps proving chaos (see text).

1o meet by adjusting the parameters of the system.
The simulation results of Fig. 3 provide a case in
point.

Thus, the very technique which has been intro-
duced recently for proving chaos in discrete sys-
tems 271! could be carried over to the continueus
domain, simply by identifying the former next-state
map with a Poincaré map.

As 10 the detailed mathematical implications of
the Lorenz-Li-Yorke map (existence of an uncount
able set of measure zero of repelling periodic
attractors; all solutions in between are non-periodic;
structural stability of flow), see 714,

Extension to the Non-idealized Case

The same trick which has been used above (sub-
stitution of a Poincaré map for a next-amplitude
map) can still be applied when the idealizing as-
sumption gt— 0 is dropped, such that the cross-sec-
tion over which the Poincaré map is defined no
longer is one-dimensional, but 2-dimensional. The
resulting, still “folded”, Poincaré map then is simi-
lar to a so-called Barker’s transformation (as cited
in 2) or a so-called horseshoe map (¥, cited after 1%},
respectively. A discrete system based on a “modified
horseshoe map’” has been studied only recently 12,

What actually happens in 3-space is shown in
Figure 6. The “folded pancake” does not display
the trajectories themselves, but only an “envelope”
(made up of surfaces without contact, ef.1?) which
is entered by trajectories (as depicted), but never

Fig. 6. The “three-dimensional blender”, (Cf. Fig. 3a.)

— = trajectories entering the siructure from the outside;

1,2 = half cross-sections (demonstrating the ‘mixing trans-

formation’ that occurs), ¢ = entry point of some arbitrarily

chosen trajectory, r == reentry point of the same trajectory

after one cycle, 4 = ‘horseshoe map', asl. = allowed slit
(see text),

left. The picture is directly derived from Figs. 1d
(turned upside down) and 3, respectively, display-
ing the principal properties only. The rectangular
cross-section on the left-hand side is seen to be
mapped difleomorphically onto a subset of itself,
as required from a 2-dimensional Poincaré map.
The “horseshoe” which is formed upon reinjection
is also clearly visible.

hauf

Fig. 7. A structure equivalent to that shown in Figure 6.

MG = Mébius loop, No = normal loop; haanf, = hele

around the unstable focus in Fig. 6; asl. = boundaries of
the altowed slit in Figure 6.




0. E. Rijssler - Chaotic Behavior in Simple Reaction Systems 263

Due to the simplicity of the picture, it may he
conjectured that it represents a sort of prototype
for the generation of a “mixing” transformation
of horseshoe shape in 3 dimensions, realizing
Smale’s ® suspension principle.

Figure 7 finally displays an, in a certain sense,
equivalent structure, It is topologically equivalent to
the cake, once a slit has been allowed in its right-
hand back in such a way that no trajectories are
damaged. Its essential part is the central rod which
is carved in two mutually orthogonal directions on
its top and its bottom, respectively.

As to the details already known about the 2-di-
mensional map (point patterns formed by the pe-
riodic repellors; existence of an “uncertainty prin-
ciple” with respect to the predictable future time
course of a lrajeclory in terms of the map’s two
coordinates; structural stability), see 14,

Discussion

A continuous chemical system has been described
which realizes a prototypically simple chaos-gener-
ating machine. Mathematically, the system is new
only insofar as it provides a simpler example to
some well-established facis (thereby perhaps acting
as a coneeptual catalyst), The observed “lateral re-
injection” of a whele bundle of irajectories appears,
as a principle of flowing in state space, possible only
beyond the sceond dimension — just as “recurrence™
of a single trajectory is a new principle in the tran-
sition from 1 to 2 dimensions (allowing for the
phenomenon of oscillation). Thus, chaos can be
classified as a dynamical property emergent with
the third dimension. In this respect it is a sort of
“superoscillation”, Whether similar qualitative
jumps are provided by the next-higher dimensions
is an open question.

Chemically, the described system is just one out
of a huge variety of possible combinations of an
oscillator, on the one hand, and a switching system,
on the other (cf. ?). Therefore, further, simpler-to-
realize examples should be easy to find. Some can-
didate systems have been listed in Figure 8. The
fact that coiltype oscillations have already heen
observed in the well-known Belousov-Zhabotinsky
reaction ® (an oscillating system known to contain
a hysteresis type subsystem?°) renders the proba-
bility of finding a chaotic mode in this concrete
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Fig. 8. Some further abstract reaetion systems likely to
produce chaos, — Thicker arrows = switching suhbsystems,

thinner arrows = oscillatory subsystems,

chemical system great enough to warrant a system-
atic experimental investigation. The phenomenon of
a “meandering” core, observed in a nonstirred ex-
citable medium of the same type?, speaks in the
same direction (Winfree, personal communication),
Incidentally, the behavior of diffusion-coupled cha-
otic systems poses & challenging dynamical problem
in its own right.

Beyond facilitating artificial design, the described
recipe (of combining an oscillation with a threshold
in state space) is already realized in many natural
systems, for example in certain metabolic and mem-
brane-bound biochemical systems; in certain hor-
monal, neuronal and hehavioral physiologieal Sys-
tems; and jn certain ecological, sociological and
economic neiworks, Search for further distinct chaos-
generating mechanisms (heyond the difference equa-
tion system of ecology already considered 8~11) s
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therefore desirable also from an applicational point
of view, in order for preventive and counter mea-
sures to be found for those cases in which the actual
onset of chaotic behavior would be harmful.
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